root/libglibc/regex.c

/* [previous][next][first][last][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. init_syntax_once
  2. extract_number
  3. extract_number_and_incr
  4. print_fastmap
  5. print_partial_compiled_pattern
  6. print_compiled_pattern
  7. print_double_string
  8. printchar
  9. re_set_syntax
  10. regex_grow_registers
  11. regex_compile
  12. store_op1
  13. store_op2
  14. insert_op1
  15. insert_op2
  16. at_begline_loc_p
  17. at_endline_loc_p
  18. group_in_compile_stack
  19. compile_range
  20. re_compile_fastmap
  21. weak_alias
  22. weak_alias
  23. weak_alias
  24. re_match
  25. weak_alias
  26. weak_alias
  27. group_match_null_string_p
  28. alt_match_null_string_p
  29. common_op_match_null_string_p
  30. bcmp_translate
  31. re_compile_pattern
  32. weak_alias
  33. re_exec
  34. regcomp
  35. weak_alias
  36. weak_alias
  37. weak_alias

   1 /* Extended regular expression matching and search library,
   2    version 0.12.
   3    (Implements POSIX draft P1003.2/D11.2, except for some of the
   4    internationalization features.)
   5    Copyright (C) 1993-1999, 2000 Free Software Foundation, Inc.
   6 
   7    The GNU C Library is free software; you can redistribute it and/or
   8    modify it under the terms of the GNU Library General Public License as
   9    published by the Free Software Foundation; either version 2 of the
  10    License, or (at your option) any later version.
  11 
  12    The GNU C Library is distributed in the hope that it will be useful,
  13    but WITHOUT ANY WARRANTY; without even the implied warranty of
  14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15    Library General Public License for more details.
  16 
  17    You should have received a copy of the GNU Library General Public
  18    License along with the GNU C Library; see the file COPYING.LIB.  If not,
  19    write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
  20    Boston, MA  02110-1301  USA. */
  21 
  22 /* AIX requires this to be the first thing in the file. */
  23 #if defined _AIX && !defined REGEX_MALLOC
  24   #pragma alloca
  25 #endif
  26 
  27 #undef  _GNU_SOURCE
  28 #define _GNU_SOURCE
  29 
  30 #ifdef HAVE_CONFIG_H
  31 # include <config.h>
  32 #endif
  33 
  34 #ifndef PARAMS
  35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
  36 #  define PARAMS(args) args
  37 # else
  38 #  define PARAMS(args) ()
  39 # endif  /* GCC.  */
  40 #endif  /* Not PARAMS.  */
  41 
  42 #if defined STDC_HEADERS && !defined emacs
  43 # include <stddef.h>
  44 #else
  45 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
  46 # include <sys/types.h>
  47 #endif
  48 
  49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
  50 
  51 /* For platform which support the ISO C amendement 1 functionality we
  52    support user defined character classes.  */
  53 #if defined _LIBC || WIDE_CHAR_SUPPORT
  54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
  55 # include <wchar.h>
  56 # include <wctype.h>
  57 #endif
  58 
  59 #ifdef _LIBC
  60 /* We have to keep the namespace clean.  */
  61 # define regfree(preg) __regfree (preg)
  62 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
  63 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
  64 # define regerror(errcode, preg, errbuf, errbuf_size) \
  65         __regerror(errcode, preg, errbuf, errbuf_size)
  66 # define re_set_registers(bu, re, nu, st, en) \
  67         __re_set_registers (bu, re, nu, st, en)
  68 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
  69         __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
  70 # define re_match(bufp, string, size, pos, regs) \
  71         __re_match (bufp, string, size, pos, regs)
  72 # define re_search(bufp, string, size, startpos, range, regs) \
  73         __re_search (bufp, string, size, startpos, range, regs)
  74 # define re_compile_pattern(pattern, length, bufp) \
  75         __re_compile_pattern (pattern, length, bufp)
  76 # define re_set_syntax(syntax) __re_set_syntax (syntax)
  77 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
  78         __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
  79 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
  80 
  81 #define btowc __btowc
  82 #endif
  83 
  84 /* This is for other GNU distributions with internationalized messages.  */
  85 #if HAVE_LIBINTL_H || defined _LIBC
  86 # include <libintl.h>
  87 #else
  88 # define gettext(msgid) (msgid)
  89 #endif
  90 
  91 #ifndef gettext_noop
  92 /* This define is so xgettext can find the internationalizable
  93    strings.  */
  94 # define gettext_noop(String) String
  95 #endif
  96 
  97 /* The `emacs' switch turns on certain matching commands
  98    that make sense only in Emacs. */
  99 #ifdef emacs
 100 
 101 # include "lisp.h"
 102 # include "buffer.h"
 103 # include "syntax.h"
 104 
 105 #else  /* not emacs */
 106 
 107 /* If we are not linking with Emacs proper,
 108    we can't use the relocating allocator
 109    even if config.h says that we can.  */
 110 # undef REL_ALLOC
 111 
 112 # if defined STDC_HEADERS || defined _LIBC
 113 #  include <stdlib.h>
 114 # else
 115 char *malloc ();
 116 char *realloc ();
 117 # endif
 118 
 119 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
 120    If nothing else has been done, use the method below.  */
 121 # ifdef INHIBIT_STRING_HEADER
 122 #  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
 123 #   if !defined bzero && !defined bcopy
 124 #    undef INHIBIT_STRING_HEADER
 125 #   endif
 126 #  endif
 127 # endif
 128 
 129 /* This is the normal way of making sure we have a bcopy and a bzero.
 130    This is used in most programs--a few other programs avoid this
 131    by defining INHIBIT_STRING_HEADER.  */
 132 # ifndef INHIBIT_STRING_HEADER
 133 #  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
 134 #   include <string.h>
 135 #   ifndef bzero
 136 #    ifndef _LIBC
 137 #     define bzero(s, n)        (memset (s, '\0', n), (s))
 138 #    else
 139 #     define bzero(s, n)        __bzero (s, n)
 140 #    endif
 141 #   endif
 142 #  else
 143 #   include <strings.h>
 144 #   ifndef memcmp
 145 #    define memcmp(s1, s2, n)   bcmp (s1, s2, n)
 146 #   endif
 147 #   ifndef memcpy
 148 #    define memcpy(d, s, n)     (bcopy (s, d, n), (d))
 149 #   endif
 150 #  endif
 151 # endif
 152 
 153 /* Define the syntax stuff for \<, \>, etc.  */
 154 
 155 /* This must be nonzero for the wordchar and notwordchar pattern
 156    commands in re_match_2.  */
 157 # ifndef Sword
 158 #  define Sword 1
 159 # endif
 160 
 161 # ifdef SWITCH_ENUM_BUG
 162 #  define SWITCH_ENUM_CAST(x) ((int)(x))
 163 # else
 164 #  define SWITCH_ENUM_CAST(x) (x)
 165 # endif
 166 
 167 #endif /* not emacs */
 168 
 169 /* Get the interface, including the syntax bits.  */
 170 #include <regex.h>
 171 
 172 /* isalpha etc. are used for the character classes.  */
 173 #include <ctype.h>
 174 
 175 /* Jim Meyering writes:
 176 
 177    "... Some ctype macros are valid only for character codes that
 178    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
 179    using /bin/cc or gcc but without giving an ansi option).  So, all
 180    ctype uses should be through macros like ISPRINT...  If
 181    STDC_HEADERS is defined, then autoconf has verified that the ctype
 182    macros don't need to be guarded with references to isascii. ...
 183    Defining isascii to 1 should let any compiler worth its salt
 184    eliminate the && through constant folding."
 185    Solaris defines some of these symbols so we must undefine them first.  */
 186 
 187 #undef ISASCII
 188 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
 189 # define ISASCII(c) 1
 190 #else
 191 # define ISASCII(c) isascii(c)
 192 #endif
 193 
 194 #ifdef isblank
 195 # define ISBLANK(c) (ISASCII (c) && isblank (c))
 196 #else
 197 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
 198 #endif
 199 #ifdef isgraph
 200 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
 201 #else
 202 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
 203 #endif
 204 
 205 #undef ISPRINT
 206 #define ISPRINT(c) (ISASCII (c) && isprint (c))
 207 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
 208 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
 209 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
 210 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
 211 #define ISLOWER(c) (ISASCII (c) && islower (c))
 212 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
 213 #define ISSPACE(c) (ISASCII (c) && isspace (c))
 214 #define ISUPPER(c) (ISASCII (c) && isupper (c))
 215 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
 216 
 217 #ifdef _tolower
 218 # define TOLOWER(c) _tolower(c)
 219 #else
 220 # define TOLOWER(c) tolower(c)
 221 #endif
 222 
 223 #ifndef NULL
 224 # define NULL (void *)0
 225 #endif
 226 
 227 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
 228    since ours (we hope) works properly with all combinations of
 229    machines, compilers, `char' and `unsigned char' argument types.
 230    (Per Bothner suggested the basic approach.)  */
 231 #undef SIGN_EXTEND_CHAR
 232 #if __STDC__
 233 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
 234 #else  /* not __STDC__ */
 235 /* As in Harbison and Steele.  */
 236 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
 237 #endif
 238 
 239 #ifndef emacs
 240 /* How many characters in the character set.  */
 241 # define CHAR_SET_SIZE 256
 242 
 243 # ifdef SYNTAX_TABLE
 244 
 245 extern char *re_syntax_table;
 246 
 247 # else /* not SYNTAX_TABLE */
 248 
 249 static char re_syntax_table[CHAR_SET_SIZE];
 250 
 251 static void
 252 init_syntax_once ()
 253 {
 254    register int c;
 255    static int done = 0;
 256 
 257    if (done)
 258      return;
 259    bzero (re_syntax_table, sizeof re_syntax_table);
 260 
 261    for (c = 0; c < CHAR_SET_SIZE; ++c)
 262      if (ISALNUM (c))
 263         re_syntax_table[c] = Sword;
 264 
 265    re_syntax_table['_'] = Sword;
 266 
 267    done = 1;
 268 }
 269 
 270 # endif /* not SYNTAX_TABLE */
 271 
 272 # define SYNTAX(c) re_syntax_table[((c) & 0xFF)]
 273 
 274 #endif /* emacs */
 275 
 276 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
 277    use `alloca' instead of `malloc'.  This is because using malloc in
 278    re_search* or re_match* could cause memory leaks when C-g is used in
 279    Emacs; also, malloc is slower and causes storage fragmentation.  On
 280    the other hand, malloc is more portable, and easier to debug.
 281 
 282    Because we sometimes use alloca, some routines have to be macros,
 283    not functions -- `alloca'-allocated space disappears at the end of the
 284    function it is called in.  */
 285 
 286 #ifdef REGEX_MALLOC
 287 
 288 # define REGEX_ALLOCATE malloc
 289 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
 290 # define REGEX_FREE free
 291 
 292 #else /* not REGEX_MALLOC  */
 293 
 294 /* Emacs already defines alloca, sometimes.  */
 295 # ifndef alloca
 296 
 297 /* Make alloca work the best possible way.  */
 298 #  ifdef __GNUC__
 299 #   define alloca __builtin_alloca
 300 #  else /* not __GNUC__ */
 301 #   if HAVE_ALLOCA_H
 302 #    include <alloca.h>
 303 #   endif /* HAVE_ALLOCA_H */
 304 #  endif /* not __GNUC__ */
 305 
 306 # endif /* not alloca */
 307 
 308 # define REGEX_ALLOCATE alloca
 309 
 310 /* Assumes a `char *destination' variable.  */
 311 # define REGEX_REALLOCATE(source, osize, nsize)                         \
 312   (destination = (char *) alloca (nsize),                               \
 313    memcpy (destination, source, osize))
 314 
 315 /* No need to do anything to free, after alloca.  */
 316 # define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
 317 
 318 #endif /* not REGEX_MALLOC */
 319 
 320 /* Define how to allocate the failure stack.  */
 321 
 322 #if defined REL_ALLOC && defined REGEX_MALLOC
 323 
 324 # define REGEX_ALLOCATE_STACK(size)                             \
 325   r_alloc (&failure_stack_ptr, (size))
 326 # define REGEX_REALLOCATE_STACK(source, osize, nsize)           \
 327   r_re_alloc (&failure_stack_ptr, (nsize))
 328 # define REGEX_FREE_STACK(ptr)                                  \
 329   r_alloc_free (&failure_stack_ptr)
 330 
 331 #else /* not using relocating allocator */
 332 
 333 # ifdef REGEX_MALLOC
 334 
 335 #  define REGEX_ALLOCATE_STACK malloc
 336 #  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
 337 #  define REGEX_FREE_STACK free
 338 
 339 # else /* not REGEX_MALLOC */
 340 
 341 #  define REGEX_ALLOCATE_STACK alloca
 342 
 343 #  define REGEX_REALLOCATE_STACK(source, osize, nsize)                  \
 344    REGEX_REALLOCATE (source, osize, nsize)
 345 /* No need to explicitly free anything.  */
 346 #  define REGEX_FREE_STACK(arg)
 347 
 348 # endif /* not REGEX_MALLOC */
 349 #endif /* not using relocating allocator */
 350 
 351 
 352 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
 353    `string1' or just past its end.  This works if PTR is NULL, which is
 354    a good thing.  */
 355 #define FIRST_STRING_P(ptr)                                     \
 356   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
 357 
 358 /* (Re)Allocate N items of type T using malloc, or fail.  */
 359 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
 360 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
 361 #define RETALLOC_IF(addr, n, t) \
 362   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
 363 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
 364 
 365 #define BYTEWIDTH 8 /* In bits.  */
 366 
 367 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
 368 
 369 #undef MAX
 370 #undef MIN
 371 #define MAX(a, b) ((a) > (b) ? (a) : (b))
 372 #define MIN(a, b) ((a) < (b) ? (a) : (b))
 373 
 374 typedef char boolean;
 375 #define false 0
 376 #define true 1
 377 
 378 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
 379                                         const char *string1, int size1,
 380                                         const char *string2, int size2,
 381                                         int pos,
 382                                         struct re_registers *regs,
 383                                         int stop));
 384 
 385 /* These are the command codes that appear in compiled regular
 386    expressions.  Some opcodes are followed by argument bytes.  A
 387    command code can specify any interpretation whatsoever for its
 388    arguments.  Zero bytes may appear in the compiled regular expression.  */
 389 
 390 typedef enum
 391 {
 392   no_op = 0,
 393 
 394   /* Succeed right away--no more backtracking.  */
 395   succeed,
 396 
 397         /* Followed by one byte giving n, then by n literal bytes.  */
 398   exactn,
 399 
 400         /* Matches any (more or less) character.  */
 401   anychar,
 402 
 403         /* Matches any one char belonging to specified set.  First
 404            following byte is number of bitmap bytes.  Then come bytes
 405            for a bitmap saying which chars are in.  Bits in each byte
 406            are ordered low-bit-first.  A character is in the set if its
 407            bit is 1.  A character too large to have a bit in the map is
 408            automatically not in the set.  */
 409   charset,
 410 
 411         /* Same parameters as charset, but match any character that is
 412            not one of those specified.  */
 413   charset_not,
 414 
 415         /* Start remembering the text that is matched, for storing in a
 416            register.  Followed by one byte with the register number, in
 417            the range 0 to one less than the pattern buffer's re_nsub
 418            field.  Then followed by one byte with the number of groups
 419            inner to this one.  (This last has to be part of the
 420            start_memory only because we need it in the on_failure_jump
 421            of re_match_2.)  */
 422   start_memory,
 423 
 424         /* Stop remembering the text that is matched and store it in a
 425            memory register.  Followed by one byte with the register
 426            number, in the range 0 to one less than `re_nsub' in the
 427            pattern buffer, and one byte with the number of inner groups,
 428            just like `start_memory'.  (We need the number of inner
 429            groups here because we don't have any easy way of finding the
 430            corresponding start_memory when we're at a stop_memory.)  */
 431   stop_memory,
 432 
 433         /* Match a duplicate of something remembered. Followed by one
 434            byte containing the register number.  */
 435   duplicate,
 436 
 437         /* Fail unless at beginning of line.  */
 438   begline,
 439 
 440         /* Fail unless at end of line.  */
 441   endline,
 442 
 443         /* Succeeds if at beginning of buffer (if emacs) or at beginning
 444            of string to be matched (if not).  */
 445   begbuf,
 446 
 447         /* Analogously, for end of buffer/string.  */
 448   endbuf,
 449 
 450         /* Followed by two byte relative address to which to jump.  */
 451   jump,
 452 
 453         /* Same as jump, but marks the end of an alternative.  */
 454   jump_past_alt,
 455 
 456         /* Followed by two-byte relative address of place to resume at
 457            in case of failure.  */
 458   on_failure_jump,
 459 
 460         /* Like on_failure_jump, but pushes a placeholder instead of the
 461            current string position when executed.  */
 462   on_failure_keep_string_jump,
 463 
 464         /* Throw away latest failure point and then jump to following
 465            two-byte relative address.  */
 466   pop_failure_jump,
 467 
 468         /* Change to pop_failure_jump if know won't have to backtrack to
 469            match; otherwise change to jump.  This is used to jump
 470            back to the beginning of a repeat.  If what follows this jump
 471            clearly won't match what the repeat does, such that we can be
 472            sure that there is no use backtracking out of repetitions
 473            already matched, then we change it to a pop_failure_jump.
 474            Followed by two-byte address.  */
 475   maybe_pop_jump,
 476 
 477         /* Jump to following two-byte address, and push a dummy failure
 478            point. This failure point will be thrown away if an attempt
 479            is made to use it for a failure.  A `+' construct makes this
 480            before the first repeat.  Also used as an intermediary kind
 481            of jump when compiling an alternative.  */
 482   dummy_failure_jump,
 483 
 484         /* Push a dummy failure point and continue.  Used at the end of
 485            alternatives.  */
 486   push_dummy_failure,
 487 
 488         /* Followed by two-byte relative address and two-byte number n.
 489            After matching N times, jump to the address upon failure.  */
 490   succeed_n,
 491 
 492         /* Followed by two-byte relative address, and two-byte number n.
 493            Jump to the address N times, then fail.  */
 494   jump_n,
 495 
 496         /* Set the following two-byte relative address to the
 497            subsequent two-byte number.  The address *includes* the two
 498            bytes of number.  */
 499   set_number_at,
 500 
 501   wordchar,     /* Matches any word-constituent character.  */
 502   notwordchar,  /* Matches any char that is not a word-constituent.  */
 503 
 504   wordbeg,      /* Succeeds if at word beginning.  */
 505   wordend,      /* Succeeds if at word end.  */
 506 
 507   wordbound,    /* Succeeds if at a word boundary.  */
 508   notwordbound  /* Succeeds if not at a word boundary.  */
 509 
 510 #ifdef emacs
 511   ,before_dot,  /* Succeeds if before point.  */
 512   at_dot,       /* Succeeds if at point.  */
 513   after_dot,    /* Succeeds if after point.  */
 514 
 515         /* Matches any character whose syntax is specified.  Followed by
 516            a byte which contains a syntax code, e.g., Sword.  */
 517   syntaxspec,
 518 
 519         /* Matches any character whose syntax is not that specified.  */
 520   notsyntaxspec
 521 #endif /* emacs */
 522 } re_opcode_t;
 523 
 524 /* Common operations on the compiled pattern.  */
 525 
 526 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
 527 
 528 #define STORE_NUMBER(destination, number)                               \
 529   do {                                                                  \
 530     (destination)[0] = (number) & 0377;                                 \
 531     (destination)[1] = (number) >> 8;                                   \
 532   } while (0)
 533 
 534 /* Same as STORE_NUMBER, except increment DESTINATION to
 535    the byte after where the number is stored.  Therefore, DESTINATION
 536    must be an lvalue.  */
 537 
 538 #define STORE_NUMBER_AND_INCR(destination, number)                      \
 539   do {                                                                  \
 540     STORE_NUMBER (destination, number);                                 \
 541     (destination) += 2;                                                 \
 542   } while (0)
 543 
 544 /* Put into DESTINATION a number stored in two contiguous bytes starting
 545    at SOURCE.  */
 546 
 547 #define EXTRACT_NUMBER(destination, source)                             \
 548   do {                                                                  \
 549     (destination) = *(source) & 0377;                                   \
 550     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;           \
 551   } while (0)
 552 
 553 #ifdef DEBUG
 554 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
 555 static void
 556 extract_number (dest, source)
 557     int *dest;
 558     unsigned char *source;
 559 {
 560   int temp = SIGN_EXTEND_CHAR (*(source + 1));
 561   *dest = *source & 0377;
 562   *dest += temp << 8;
 563 }
 564 
 565 # ifndef EXTRACT_MACROS /* To debug the macros.  */
 566 #  undef EXTRACT_NUMBER
 567 #  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
 568 # endif /* not EXTRACT_MACROS */
 569 
 570 #endif /* DEBUG */
 571 
 572 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
 573    SOURCE must be an lvalue.  */
 574 
 575 #define EXTRACT_NUMBER_AND_INCR(destination, source)                    \
 576   do {                                                                  \
 577     EXTRACT_NUMBER (destination, source);                               \
 578     (source) += 2;                                                      \
 579   } while (0)
 580 
 581 #ifdef DEBUG
 582 static void extract_number_and_incr _RE_ARGS ((int *destination,
 583                                                unsigned char **source));
 584 static void
 585 extract_number_and_incr (destination, source)
 586     int *destination;
 587     unsigned char **source;
 588 {
 589   extract_number (destination, *source);
 590   *source += 2;
 591 }
 592 
 593 # ifndef EXTRACT_MACROS
 594 #  undef EXTRACT_NUMBER_AND_INCR
 595 #  define EXTRACT_NUMBER_AND_INCR(dest, src) \
 596   extract_number_and_incr (&dest, &src)
 597 # endif /* not EXTRACT_MACROS */
 598 
 599 #endif /* DEBUG */
 600 
 601 /* If DEBUG is defined, Regex prints many voluminous messages about what
 602    it is doing (if the variable `debug' is nonzero).  If linked with the
 603    main program in `iregex.c', you can enter patterns and strings
 604    interactively.  And if linked with the main program in `main.c' and
 605    the other test files, you can run the already-written tests.  */
 606 
 607 #ifdef DEBUG
 608 
 609 /* We use standard I/O for debugging.  */
 610 # include <stdio.h>
 611 
 612 /* It is useful to test things that ``must'' be true when debugging.  */
 613 # include <assert.h>
 614 
 615 static int debug;
 616 
 617 # define DEBUG_STATEMENT(e) e
 618 # define DEBUG_PRINT1(x) if (debug) printf (x)
 619 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
 620 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
 621 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
 622 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                          \
 623   if (debug) print_partial_compiled_pattern (s, e)
 624 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                 \
 625   if (debug) print_double_string (w, s1, sz1, s2, sz2)
 626 
 627 
 628 /* Print the fastmap in human-readable form.  */
 629 
 630 void
 631 print_fastmap (fastmap)
 632     char *fastmap;
 633 {
 634   unsigned was_a_range = 0;
 635   unsigned i = 0;
 636 
 637   while (i < (1 << BYTEWIDTH))
 638     {
 639       if (fastmap[i++])
 640         {
 641           was_a_range = 0;
 642           putchar (i - 1);
 643           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
 644             {
 645               was_a_range = 1;
 646               i++;
 647             }
 648           if (was_a_range)
 649             {
 650               printf ("-");
 651               putchar (i - 1);
 652             }
 653         }
 654     }
 655   putchar ('\n');
 656 }
 657 
 658 
 659 /* Print a compiled pattern string in human-readable form, starting at
 660    the START pointer into it and ending just before the pointer END.  */
 661 
 662 void
 663 print_partial_compiled_pattern (start, end)
 664     unsigned char *start;
 665     unsigned char *end;
 666 {
 667   int mcnt, mcnt2;
 668   unsigned char *p1;
 669   unsigned char *p = start;
 670   unsigned char *pend = end;
 671 
 672   if (start == NULL)
 673     {
 674       printf ("(null)\n");
 675       return;
 676     }
 677 
 678   /* Loop over pattern commands.  */
 679   while (p < pend)
 680     {
 681       printf ("%d:\t", p - start);
 682 
 683       switch ((re_opcode_t) *p++)
 684         {
 685         case no_op:
 686           printf ("/no_op");
 687           break;
 688 
 689         case exactn:
 690           mcnt = *p++;
 691           printf ("/exactn/%d", mcnt);
 692           do
 693             {
 694               putchar ('/');
 695               putchar (*p++);
 696             }
 697           while (--mcnt);
 698           break;
 699 
 700         case start_memory:
 701           mcnt = *p++;
 702           printf ("/start_memory/%d/%d", mcnt, *p++);
 703           break;
 704 
 705         case stop_memory:
 706           mcnt = *p++;
 707           printf ("/stop_memory/%d/%d", mcnt, *p++);
 708           break;
 709 
 710         case duplicate:
 711           printf ("/duplicate/%d", *p++);
 712           break;
 713 
 714         case anychar:
 715           printf ("/anychar");
 716           break;
 717 
 718         case charset:
 719         case charset_not:
 720           {
 721             register int c, last = -100;
 722             register int in_range = 0;
 723 
 724             printf ("/charset [%s",
 725                     (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
 726 
 727             assert (p + *p < pend);
 728 
 729             for (c = 0; c < 256; c++)
 730               if (c / 8 < *p
 731                   && (p[1 + (c/8)] & (1 << (c % 8))))
 732                 {
 733                   /* Are we starting a range?  */
 734                   if (last + 1 == c && ! in_range)
 735                     {
 736                       putchar ('-');
 737                       in_range = 1;
 738                     }
 739                   /* Have we broken a range?  */
 740                   else if (last + 1 != c && in_range)
 741               {
 742                       putchar (last);
 743                       in_range = 0;
 744                     }
 745 
 746                   if (! in_range)
 747                     putchar (c);
 748 
 749                   last = c;
 750               }
 751 
 752             if (in_range)
 753               putchar (last);
 754 
 755             putchar (']');
 756 
 757             p += 1 + *p;
 758           }
 759           break;
 760 
 761         case begline:
 762           printf ("/begline");
 763           break;
 764 
 765         case endline:
 766           printf ("/endline");
 767           break;
 768 
 769         case on_failure_jump:
 770           extract_number_and_incr (&mcnt, &p);
 771           printf ("/on_failure_jump to %d", p + mcnt - start);
 772           break;
 773 
 774         case on_failure_keep_string_jump:
 775           extract_number_and_incr (&mcnt, &p);
 776           printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
 777           break;
 778 
 779         case dummy_failure_jump:
 780           extract_number_and_incr (&mcnt, &p);
 781           printf ("/dummy_failure_jump to %d", p + mcnt - start);
 782           break;
 783 
 784         case push_dummy_failure:
 785           printf ("/push_dummy_failure");
 786           break;
 787 
 788         case maybe_pop_jump:
 789           extract_number_and_incr (&mcnt, &p);
 790           printf ("/maybe_pop_jump to %d", p + mcnt - start);
 791           break;
 792 
 793         case pop_failure_jump:
 794           extract_number_and_incr (&mcnt, &p);
 795           printf ("/pop_failure_jump to %d", p + mcnt - start);
 796           break;
 797 
 798         case jump_past_alt:
 799           extract_number_and_incr (&mcnt, &p);
 800           printf ("/jump_past_alt to %d", p + mcnt - start);
 801           break;
 802 
 803         case jump:
 804           extract_number_and_incr (&mcnt, &p);
 805           printf ("/jump to %d", p + mcnt - start);
 806           break;
 807 
 808         case succeed_n:
 809           extract_number_and_incr (&mcnt, &p);
 810           p1 = p + mcnt;
 811           extract_number_and_incr (&mcnt2, &p);
 812           printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
 813           break;
 814 
 815         case jump_n:
 816           extract_number_and_incr (&mcnt, &p);
 817           p1 = p + mcnt;
 818           extract_number_and_incr (&mcnt2, &p);
 819           printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
 820           break;
 821 
 822         case set_number_at:
 823           extract_number_and_incr (&mcnt, &p);
 824           p1 = p + mcnt;
 825           extract_number_and_incr (&mcnt2, &p);
 826           printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
 827           break;
 828 
 829         case wordbound:
 830           printf ("/wordbound");
 831           break;
 832 
 833         case notwordbound:
 834           printf ("/notwordbound");
 835           break;
 836 
 837         case wordbeg:
 838           printf ("/wordbeg");
 839           break;
 840 
 841         case wordend:
 842           printf ("/wordend");
 843 
 844 # ifdef emacs
 845         case before_dot:
 846           printf ("/before_dot");
 847           break;
 848 
 849         case at_dot:
 850           printf ("/at_dot");
 851           break;
 852 
 853         case after_dot:
 854           printf ("/after_dot");
 855           break;
 856 
 857         case syntaxspec:
 858           printf ("/syntaxspec");
 859           mcnt = *p++;
 860           printf ("/%d", mcnt);
 861           break;
 862 
 863         case notsyntaxspec:
 864           printf ("/notsyntaxspec");
 865           mcnt = *p++;
 866           printf ("/%d", mcnt);
 867           break;
 868 # endif /* emacs */
 869 
 870         case wordchar:
 871           printf ("/wordchar");
 872           break;
 873 
 874         case notwordchar:
 875           printf ("/notwordchar");
 876           break;
 877 
 878         case begbuf:
 879           printf ("/begbuf");
 880           break;
 881 
 882         case endbuf:
 883           printf ("/endbuf");
 884           break;
 885 
 886         default:
 887           printf ("?%d", *(p-1));
 888         }
 889 
 890       putchar ('\n');
 891     }
 892 
 893   printf ("%d:\tend of pattern.\n", p - start);
 894 }
 895 
 896 
 897 void
 898 print_compiled_pattern (bufp)
 899     struct re_pattern_buffer *bufp;
 900 {
 901   unsigned char *buffer = bufp->buffer;
 902 
 903   print_partial_compiled_pattern (buffer, buffer + bufp->used);
 904   printf ("%ld bytes used/%ld bytes allocated.\n",
 905           bufp->used, bufp->allocated);
 906 
 907   if (bufp->fastmap_accurate && bufp->fastmap)
 908     {
 909       printf ("fastmap: ");
 910       print_fastmap (bufp->fastmap);
 911     }
 912 
 913   printf ("re_nsub: %d\t", bufp->re_nsub);
 914   printf ("regs_alloc: %d\t", bufp->regs_allocated);
 915   printf ("can_be_null: %d\t", bufp->can_be_null);
 916   printf ("newline_anchor: %d\n", bufp->newline_anchor);
 917   printf ("no_sub: %d\t", bufp->no_sub);
 918   printf ("not_bol: %d\t", bufp->not_bol);
 919   printf ("not_eol: %d\t", bufp->not_eol);
 920   printf ("syntax: %lx\n", bufp->syntax);
 921   /* Perhaps we should print the translate table?  */
 922 }
 923 
 924 
 925 void
 926 print_double_string (where, string1, size1, string2, size2)
 927     const char *where;
 928     const char *string1;
 929     const char *string2;
 930     int size1;
 931     int size2;
 932 {
 933   int this_char;
 934 
 935   if (where == NULL)
 936     printf ("(null)");
 937   else
 938     {
 939       if (FIRST_STRING_P (where))
 940         {
 941           for (this_char = where - string1; this_char < size1; this_char++)
 942             putchar (string1[this_char]);
 943 
 944           where = string2;
 945         }
 946 
 947       for (this_char = where - string2; this_char < size2; this_char++)
 948         putchar (string2[this_char]);
 949     }
 950 }
 951 
 952 void
 953 printchar (c)
 954      int c;
 955 {
 956   putc (c, stderr);
 957 }
 958 
 959 #else /* not DEBUG */
 960 
 961 # undef assert
 962 # define assert(e)
 963 
 964 # define DEBUG_STATEMENT(e)
 965 # define DEBUG_PRINT1(x)
 966 # define DEBUG_PRINT2(x1, x2)
 967 # define DEBUG_PRINT3(x1, x2, x3)
 968 # define DEBUG_PRINT4(x1, x2, x3, x4)
 969 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
 970 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
 971 
 972 #endif /* not DEBUG */
 973 
 974 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
 975    also be assigned to arbitrarily: each pattern buffer stores its own
 976    syntax, so it can be changed between regex compilations.  */
 977 /* This has no initializer because initialized variables in Emacs
 978    become read-only after dumping.  */
 979 reg_syntax_t re_syntax_options;
 980 
 981 
 982 /* Specify the precise syntax of regexps for compilation.  This provides
 983    for compatibility for various utilities which historically have
 984    different, incompatible syntaxes.
 985 
 986    The argument SYNTAX is a bit mask comprised of the various bits
 987    defined in regex.h.  We return the old syntax.  */
 988 
 989 reg_syntax_t
 990 re_set_syntax (syntax)
 991     reg_syntax_t syntax;
 992 {
 993   reg_syntax_t ret = re_syntax_options;
 994 
 995   re_syntax_options = syntax;
 996 #ifdef DEBUG
 997   if (syntax & RE_DEBUG)
 998     debug = 1;
 999   else if (debug) /* was on but now is not */
1000     debug = 0;
1001 #endif /* DEBUG */
1002   return ret;
1003 }
1004 #ifdef _LIBC
1005 weak_alias (__re_set_syntax, re_set_syntax)
1006 #endif
1007 
1008 /* This table gives an error message for each of the error codes listed
1009    in regex.h.  Obviously the order here has to be same as there.
1010    POSIX doesn't require that we do anything for REG_NOERROR,
1011    but why not be nice?  */
1012 
1013 static const char re_error_msgid[] =
1014   {
1015 #define REG_NOERROR_IDX 0
1016     gettext_noop ("Success")    /* REG_NOERROR */
1017     "\0"
1018 #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1019     gettext_noop ("No match")   /* REG_NOMATCH */
1020     "\0"
1021 #define REG_BADPAT_IDX  (REG_NOMATCH_IDX + sizeof "No match")
1022     gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1023     "\0"
1024 #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1025     gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1026     "\0"
1027 #define REG_ECTYPE_IDX  (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1028     gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1029     "\0"
1030 #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1031     gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1032     "\0"
1033 #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1034     gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1035     "\0"
1036 #define REG_EBRACK_IDX  (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1037     gettext_noop ("Unmatched [ or [^")  /* REG_EBRACK */
1038     "\0"
1039 #define REG_EPAREN_IDX  (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1040     gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1041     "\0"
1042 #define REG_EBRACE_IDX  (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1043     gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1044     "\0"
1045 #define REG_BADBR_IDX   (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1046     gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1047     "\0"
1048 #define REG_ERANGE_IDX  (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1049     gettext_noop ("Invalid range end")  /* REG_ERANGE */
1050     "\0"
1051 #define REG_ESPACE_IDX  (REG_ERANGE_IDX + sizeof "Invalid range end")
1052     gettext_noop ("Memory exhausted") /* REG_ESPACE */
1053     "\0"
1054 #define REG_BADRPT_IDX  (REG_ESPACE_IDX + sizeof "Memory exhausted")
1055     gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1056     "\0"
1057 #define REG_EEND_IDX    (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1058     gettext_noop ("Premature end of regular expression") /* REG_EEND */
1059     "\0"
1060 #define REG_ESIZE_IDX   (REG_EEND_IDX + sizeof "Premature end of regular expression")
1061     gettext_noop ("Regular expression too big") /* REG_ESIZE */
1062     "\0"
1063 #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1064     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1065   };
1066 
1067 static const size_t re_error_msgid_idx[] =
1068   {
1069     REG_NOERROR_IDX,
1070     REG_NOMATCH_IDX,
1071     REG_BADPAT_IDX,
1072     REG_ECOLLATE_IDX,
1073     REG_ECTYPE_IDX,
1074     REG_EESCAPE_IDX,
1075     REG_ESUBREG_IDX,
1076     REG_EBRACK_IDX,
1077     REG_EPAREN_IDX,
1078     REG_EBRACE_IDX,
1079     REG_BADBR_IDX,
1080     REG_ERANGE_IDX,
1081     REG_ESPACE_IDX,
1082     REG_BADRPT_IDX,
1083     REG_EEND_IDX,
1084     REG_ESIZE_IDX,
1085     REG_ERPAREN_IDX
1086   };
1087 
1088 /* Avoiding alloca during matching, to placate r_alloc.  */
1089 
1090 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1091    searching and matching functions should not call alloca.  On some
1092    systems, alloca is implemented in terms of malloc, and if we're
1093    using the relocating allocator routines, then malloc could cause a
1094    relocation, which might (if the strings being searched are in the
1095    ralloc heap) shift the data out from underneath the regexp
1096    routines.
1097 
1098    Here's another reason to avoid allocation: Emacs
1099    processes input from X in a signal handler; processing X input may
1100    call malloc; if input arrives while a matching routine is calling
1101    malloc, then we're scrod.  But Emacs can't just block input while
1102    calling matching routines; then we don't notice interrupts when
1103    they come in.  So, Emacs blocks input around all regexp calls
1104    except the matching calls, which it leaves unprotected, in the
1105    faith that they will not malloc.  */
1106 
1107 /* Normally, this is fine.  */
1108 #define MATCH_MAY_ALLOCATE
1109 
1110 /* When using GNU C, we are not REALLY using the C alloca, no matter
1111    what config.h may say.  So don't take precautions for it.  */
1112 #ifdef __GNUC__
1113 # undef C_ALLOCA
1114 #endif
1115 
1116 /* The match routines may not allocate if (1) they would do it with malloc
1117    and (2) it's not safe for them to use malloc.
1118    Note that if REL_ALLOC is defined, matching would not use malloc for the
1119    failure stack, but we would still use it for the register vectors;
1120    so REL_ALLOC should not affect this.  */
1121 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1122 # undef MATCH_MAY_ALLOCATE
1123 #endif
1124 
1125 
1126 /* Failure stack declarations and macros; both re_compile_fastmap and
1127    re_match_2 use a failure stack.  These have to be macros because of
1128    REGEX_ALLOCATE_STACK.  */
1129 
1130 
1131 /* Number of failure points for which to initially allocate space
1132    when matching.  If this number is exceeded, we allocate more
1133    space, so it is not a hard limit.  */
1134 #ifndef INIT_FAILURE_ALLOC
1135 # define INIT_FAILURE_ALLOC 5
1136 #endif
1137 
1138 /* Roughly the maximum number of failure points on the stack.  Would be
1139    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1140    This is a variable only so users of regex can assign to it; we never
1141    change it ourselves.  */
1142 
1143 #ifdef INT_IS_16BIT
1144 
1145 # if defined MATCH_MAY_ALLOCATE
1146 /* 4400 was enough to cause a crash on Alpha OSF/1,
1147    whose default stack limit is 2mb.  */
1148 long int re_max_failures = 4000;
1149 # else
1150 long int re_max_failures = 2000;
1151 # endif
1152 
1153 union fail_stack_elt
1154 {
1155   unsigned char *pointer;
1156   long int integer;
1157 };
1158 
1159 typedef union fail_stack_elt fail_stack_elt_t;
1160 
1161 typedef struct
1162 {
1163   fail_stack_elt_t *stack;
1164   unsigned long int size;
1165   unsigned long int avail;              /* Offset of next open position.  */
1166 } fail_stack_type;
1167 
1168 #else /* not INT_IS_16BIT */
1169 
1170 # if defined MATCH_MAY_ALLOCATE
1171 /* 4400 was enough to cause a crash on Alpha OSF/1,
1172    whose default stack limit is 2mb.  */
1173 int re_max_failures = 20000;
1174 # else
1175 int re_max_failures = 2000;
1176 # endif
1177 
1178 union fail_stack_elt
1179 {
1180   unsigned char *pointer;
1181   int integer;
1182 };
1183 
1184 typedef union fail_stack_elt fail_stack_elt_t;
1185 
1186 typedef struct
1187 {
1188   fail_stack_elt_t *stack;
1189   unsigned size;
1190   unsigned avail;                       /* Offset of next open position.  */
1191 } fail_stack_type;
1192 
1193 #endif /* INT_IS_16BIT */
1194 
1195 #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1196 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1197 #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1198 
1199 
1200 /* Define macros to initialize and free the failure stack.
1201    Do `return -2' if the alloc fails.  */
1202 
1203 #ifdef MATCH_MAY_ALLOCATE
1204 # define INIT_FAIL_STACK()                                              \
1205   do {                                                                  \
1206     fail_stack.stack = (fail_stack_elt_t *)                             \
1207       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1208                                                                         \
1209     if (fail_stack.stack == NULL)                                       \
1210       return -2;                                                        \
1211                                                                         \
1212     fail_stack.size = INIT_FAILURE_ALLOC;                               \
1213     fail_stack.avail = 0;                                               \
1214   } while (0)
1215 
1216 # define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1217 #else
1218 # define INIT_FAIL_STACK()                                              \
1219   do {                                                                  \
1220     fail_stack.avail = 0;                                               \
1221   } while (0)
1222 
1223 # define RESET_FAIL_STACK()
1224 #endif
1225 
1226 
1227 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1228 
1229    Return 1 if succeeds, and 0 if either ran out of memory
1230    allocating space for it or it was already too large.
1231 
1232    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1233 
1234 #define DOUBLE_FAIL_STACK(fail_stack)                                   \
1235   ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1236    ? 0                                                                  \
1237    : ((fail_stack).stack = (fail_stack_elt_t *)                         \
1238         REGEX_REALLOCATE_STACK ((fail_stack).stack,                     \
1239           (fail_stack).size * sizeof (fail_stack_elt_t),                \
1240           ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),        \
1241                                                                         \
1242       (fail_stack).stack == NULL                                        \
1243       ? 0                                                               \
1244       : ((fail_stack).size <<= 1,                                       \
1245          1)))
1246 
1247 
1248 /* Push pointer POINTER on FAIL_STACK.
1249    Return 1 if was able to do so and 0 if ran out of memory allocating
1250    space to do so.  */
1251 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK)                            \
1252   ((FAIL_STACK_FULL ()                                                  \
1253     && !DOUBLE_FAIL_STACK (FAIL_STACK))                                 \
1254    ? 0                                                                  \
1255    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,       \
1256       1))
1257 
1258 /* Push a pointer value onto the failure stack.
1259    Assumes the variable `fail_stack'.  Probably should only
1260    be called from within `PUSH_FAILURE_POINT'.  */
1261 #define PUSH_FAILURE_POINTER(item)                                      \
1262   fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1263 
1264 /* This pushes an integer-valued item onto the failure stack.
1265    Assumes the variable `fail_stack'.  Probably should only
1266    be called from within `PUSH_FAILURE_POINT'.  */
1267 #define PUSH_FAILURE_INT(item)                                  \
1268   fail_stack.stack[fail_stack.avail++].integer = (item)
1269 
1270 /* Push a fail_stack_elt_t value onto the failure stack.
1271    Assumes the variable `fail_stack'.  Probably should only
1272    be called from within `PUSH_FAILURE_POINT'.  */
1273 #define PUSH_FAILURE_ELT(item)                                  \
1274   fail_stack.stack[fail_stack.avail++] =  (item)
1275 
1276 /* These three POP... operations complement the three PUSH... operations.
1277    All assume that `fail_stack' is nonempty.  */
1278 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1279 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1280 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1281 
1282 /* Used to omit pushing failure point id's when we're not debugging.  */
1283 #ifdef DEBUG
1284 # define DEBUG_PUSH PUSH_FAILURE_INT
1285 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1286 #else
1287 # define DEBUG_PUSH(item)
1288 # define DEBUG_POP(item_addr)
1289 #endif
1290 
1291 
1292 /* Push the information about the state we will need
1293    if we ever fail back to it.
1294 
1295    Requires variables fail_stack, regstart, regend, reg_info, and
1296    num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1297    be declared.
1298 
1299    Does `return FAILURE_CODE' if runs out of memory.  */
1300 
1301 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)   \
1302   do {                                                                  \
1303     char *destination;                                                  \
1304     /* Must be int, so when we don't save any registers, the arithmetic \
1305        of 0 + -1 isn't done as unsigned.  */                            \
1306     /* Can't be int, since there is not a shred of a guarantee that int \
1307        is wide enough to hold a value of something to which pointer can \
1308        be assigned */                                                   \
1309     active_reg_t this_reg;                                              \
1310                                                                         \
1311     DEBUG_STATEMENT (failure_id++);                                     \
1312     DEBUG_STATEMENT (nfailure_points_pushed++);                         \
1313     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);           \
1314     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1315     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1316                                                                         \
1317     DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);          \
1318     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);       \
1319                                                                         \
1320     /* Ensure we have enough space allocated for what we will push.  */ \
1321     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                   \
1322       {                                                                 \
1323         if (!DOUBLE_FAIL_STACK (fail_stack))                            \
1324           return failure_code;                                          \
1325                                                                         \
1326         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",              \
1327                        (fail_stack).size);                              \
1328         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1329       }                                                                 \
1330                                                                         \
1331     /* Push the info, starting with the registers.  */                  \
1332     DEBUG_PRINT1 ("\n");                                                \
1333                                                                         \
1334     if (1)                                                              \
1335       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1336            this_reg++)                                                  \
1337         {                                                               \
1338           DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);              \
1339           DEBUG_STATEMENT (num_regs_pushed++);                          \
1340                                                                         \
1341           DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);         \
1342           PUSH_FAILURE_POINTER (regstart[this_reg]);                    \
1343                                                                         \
1344           DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);             \
1345           PUSH_FAILURE_POINTER (regend[this_reg]);                      \
1346                                                                         \
1347           DEBUG_PRINT2 ("    info: %p\n      ",                         \
1348                         reg_info[this_reg].word.pointer);               \
1349           DEBUG_PRINT2 (" match_null=%d",                               \
1350                         REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
1351           DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
1352           DEBUG_PRINT2 (" matched_something=%d",                        \
1353                         MATCHED_SOMETHING (reg_info[this_reg]));        \
1354           DEBUG_PRINT2 (" ever_matched=%d",                             \
1355                         EVER_MATCHED_SOMETHING (reg_info[this_reg]));   \
1356           DEBUG_PRINT1 ("\n");                                          \
1357           PUSH_FAILURE_ELT (reg_info[this_reg].word);                   \
1358         }                                                               \
1359                                                                         \
1360     DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1361     PUSH_FAILURE_INT (lowest_active_reg);                               \
1362                                                                         \
1363     DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1364     PUSH_FAILURE_INT (highest_active_reg);                              \
1365                                                                         \
1366     DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);            \
1367     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);           \
1368     PUSH_FAILURE_POINTER (pattern_place);                               \
1369                                                                         \
1370     DEBUG_PRINT2 ("  Pushing string %p: `", string_place);              \
1371     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1372                                  size2);                                \
1373     DEBUG_PRINT1 ("'\n");                                               \
1374     PUSH_FAILURE_POINTER (string_place);                                \
1375                                                                         \
1376     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);            \
1377     DEBUG_PUSH (failure_id);                                            \
1378   } while (0)
1379 
1380 /* This is the number of items that are pushed and popped on the stack
1381    for each register.  */
1382 #define NUM_REG_ITEMS  3
1383 
1384 /* Individual items aside from the registers.  */
1385 #ifdef DEBUG
1386 # define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1387 #else
1388 # define NUM_NONREG_ITEMS 4
1389 #endif
1390 
1391 /* We push at most this many items on the stack.  */
1392 /* We used to use (num_regs - 1), which is the number of registers
1393    this regexp will save; but that was changed to 5
1394    to avoid stack overflow for a regexp with lots of parens.  */
1395 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1396 
1397 /* We actually push this many items.  */
1398 #define NUM_FAILURE_ITEMS                               \
1399   (((0                                                  \
1400      ? 0 : highest_active_reg - lowest_active_reg + 1)  \
1401     * NUM_REG_ITEMS)                                    \
1402    + NUM_NONREG_ITEMS)
1403 
1404 /* How many items can still be added to the stack without overflowing it.  */
1405 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1406 
1407 
1408 /* Pops what PUSH_FAIL_STACK pushes.
1409 
1410    We restore into the parameters, all of which should be lvalues:
1411      STR -- the saved data position.
1412      PAT -- the saved pattern position.
1413      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1414      REGSTART, REGEND -- arrays of string positions.
1415      REG_INFO -- array of information about each subexpression.
1416 
1417    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1418    `pend', `string1', `size1', `string2', and `size2'.  */
1419 
1420 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1421 {                                                                       \
1422   DEBUG_STATEMENT (unsigned failure_id;)                                \
1423   active_reg_t this_reg;                                                \
1424   const unsigned char *string_temp;                                     \
1425                                                                         \
1426   assert (!FAIL_STACK_EMPTY ());                                        \
1427                                                                         \
1428   /* Remove failure points and point to how many regs pushed.  */       \
1429   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                                \
1430   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);    \
1431   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);     \
1432                                                                         \
1433   assert (fail_stack.avail >= NUM_NONREG_ITEMS);                        \
1434                                                                         \
1435   DEBUG_POP (&failure_id);                                              \
1436   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);              \
1437                                                                         \
1438   /* If the saved string location is NULL, it came from an              \
1439      on_failure_keep_string_jump opcode, and we want to throw away the  \
1440      saved NULL, thus retaining our current position in the string.  */ \
1441   string_temp = POP_FAILURE_POINTER ();                                 \
1442   if (string_temp != NULL)                                              \
1443     str = (const char *) string_temp;                                   \
1444                                                                         \
1445   DEBUG_PRINT2 ("  Popping string %p: `", str);                         \
1446   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);      \
1447   DEBUG_PRINT1 ("'\n");                                                 \
1448                                                                         \
1449   pat = (unsigned char *) POP_FAILURE_POINTER ();                       \
1450   DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);                        \
1451   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                       \
1452                                                                         \
1453   /* Restore register info.  */                                         \
1454   high_reg = (active_reg_t) POP_FAILURE_INT ();                         \
1455   DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);          \
1456                                                                         \
1457   low_reg = (active_reg_t) POP_FAILURE_INT ();                          \
1458   DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);           \
1459                                                                         \
1460   if (1)                                                                \
1461     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)          \
1462       {                                                                 \
1463         DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);              \
1464                                                                         \
1465         reg_info[this_reg].word = POP_FAILURE_ELT ();                   \
1466         DEBUG_PRINT2 ("      info: %p\n",                               \
1467                       reg_info[this_reg].word.pointer);                 \
1468                                                                         \
1469         regend[this_reg] = (const char *) POP_FAILURE_POINTER ();       \
1470         DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);             \
1471                                                                         \
1472         regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();     \
1473         DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);         \
1474       }                                                                 \
1475   else                                                                  \
1476     {                                                                   \
1477       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1478         {                                                               \
1479           reg_info[this_reg].word.integer = 0;                          \
1480           regend[this_reg] = 0;                                         \
1481           regstart[this_reg] = 0;                                       \
1482         }                                                               \
1483       highest_active_reg = high_reg;                                    \
1484     }                                                                   \
1485                                                                         \
1486   set_regs_matched_done = 0;                                            \
1487   DEBUG_STATEMENT (nfailure_points_popped++);                           \
1488 } /* POP_FAILURE_POINT */
1489 
1490 
1491 
1492 /* Structure for per-register (a.k.a. per-group) information.
1493    Other register information, such as the
1494    starting and ending positions (which are addresses), and the list of
1495    inner groups (which is a bits list) are maintained in separate
1496    variables.
1497 
1498    We are making a (strictly speaking) nonportable assumption here: that
1499    the compiler will pack our bit fields into something that fits into
1500    the type of `word', i.e., is something that fits into one item on the
1501    failure stack.  */
1502 
1503 
1504 /* Declarations and macros for re_match_2.  */
1505 
1506 typedef union
1507 {
1508   fail_stack_elt_t word;
1509   struct
1510   {
1511       /* This field is one if this group can match the empty string,
1512          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1513 #define MATCH_NULL_UNSET_VALUE 3
1514     unsigned match_null_string_p : 2;
1515     unsigned is_active : 1;
1516     unsigned matched_something : 1;
1517     unsigned ever_matched_something : 1;
1518   } bits;
1519 } register_info_type;
1520 
1521 #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1522 #define IS_ACTIVE(R)  ((R).bits.is_active)
1523 #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1524 #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1525 
1526 
1527 /* Call this when have matched a real character; it sets `matched' flags
1528    for the subexpressions which we are currently inside.  Also records
1529    that those subexprs have matched.  */
1530 #define SET_REGS_MATCHED()                                              \
1531   do                                                                    \
1532     {                                                                   \
1533       if (!set_regs_matched_done)                                       \
1534         {                                                               \
1535           active_reg_t r;                                               \
1536           set_regs_matched_done = 1;                                    \
1537           for (r = lowest_active_reg; r <= highest_active_reg; r++)     \
1538             {                                                           \
1539               MATCHED_SOMETHING (reg_info[r])                           \
1540                 = EVER_MATCHED_SOMETHING (reg_info[r])                  \
1541                 = 1;                                                    \
1542             }                                                           \
1543         }                                                               \
1544     }                                                                   \
1545   while (0)
1546 
1547 /* Registers are set to a sentinel when they haven't yet matched.  */
1548 static char reg_unset_dummy;
1549 #define REG_UNSET_VALUE (&reg_unset_dummy)
1550 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1551 
1552 /* Subroutine declarations and macros for regex_compile.  */
1553 
1554 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1555                                               reg_syntax_t syntax,
1556                                               struct re_pattern_buffer *bufp));
1557 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1558 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1559                                  int arg1, int arg2));
1560 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1561                                   int arg, unsigned char *end));
1562 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1563                                   int arg1, int arg2, unsigned char *end));
1564 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1565                                            reg_syntax_t syntax));
1566 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1567                                            reg_syntax_t syntax));
1568 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1569                                               const char *pend,
1570                                               char *translate,
1571                                               reg_syntax_t syntax,
1572                                               unsigned char *b));
1573 
1574 /* Fetch the next character in the uncompiled pattern---translating it
1575    if necessary.  Also cast from a signed character in the constant
1576    string passed to us by the user to an unsigned char that we can use
1577    as an array index (in, e.g., `translate').  */
1578 #ifndef PATFETCH
1579 # define PATFETCH(c)                                                    \
1580   do {if (p == pend) return REG_EEND;                                   \
1581     c = (unsigned char) *p++;                                           \
1582     if (translate) c = (unsigned char) translate[c];                    \
1583   } while (0)
1584 #endif
1585 
1586 /* Fetch the next character in the uncompiled pattern, with no
1587    translation.  */
1588 #define PATFETCH_RAW(c)                                                 \
1589   do {if (p == pend) return REG_EEND;                                   \
1590     c = (unsigned char) *p++;                                           \
1591   } while (0)
1592 
1593 /* Go backwards one character in the pattern.  */
1594 #define PATUNFETCH p--
1595 
1596 
1597 /* If `translate' is non-null, return translate[D], else just D.  We
1598    cast the subscript to translate because some data is declared as
1599    `char *', to avoid warnings when a string constant is passed.  But
1600    when we use a character as a subscript we must make it unsigned.  */
1601 #ifndef TRANSLATE
1602 # define TRANSLATE(d) \
1603   (translate ? (char) translate[(unsigned char) (d)] : (d))
1604 #endif
1605 
1606 
1607 /* Macros for outputting the compiled pattern into `buffer'.  */
1608 
1609 /* If the buffer isn't allocated when it comes in, use this.  */
1610 #define INIT_BUF_SIZE  32
1611 
1612 /* Make sure we have at least N more bytes of space in buffer.  */
1613 #define GET_BUFFER_SPACE(n)                                             \
1614     while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)  \
1615       EXTEND_BUFFER ()
1616 
1617 /* Make sure we have one more byte of buffer space and then add C to it.  */
1618 #define BUF_PUSH(c)                                                     \
1619   do {                                                                  \
1620     GET_BUFFER_SPACE (1);                                               \
1621     *b++ = (unsigned char) (c);                                         \
1622   } while (0)
1623 
1624 
1625 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1626 #define BUF_PUSH_2(c1, c2)                                              \
1627   do {                                                                  \
1628     GET_BUFFER_SPACE (2);                                               \
1629     *b++ = (unsigned char) (c1);                                        \
1630     *b++ = (unsigned char) (c2);                                        \
1631   } while (0)
1632 
1633 
1634 /* As with BUF_PUSH_2, except for three bytes.  */
1635 #define BUF_PUSH_3(c1, c2, c3)                                          \
1636   do {                                                                  \
1637     GET_BUFFER_SPACE (3);                                               \
1638     *b++ = (unsigned char) (c1);                                        \
1639     *b++ = (unsigned char) (c2);                                        \
1640     *b++ = (unsigned char) (c3);                                        \
1641   } while (0)
1642 
1643 
1644 /* Store a jump with opcode OP at LOC to location TO.  We store a
1645    relative address offset by the three bytes the jump itself occupies.  */
1646 #define STORE_JUMP(op, loc, to) \
1647   store_op1 (op, loc, (int) ((to) - (loc) - 3))
1648 
1649 /* Likewise, for a two-argument jump.  */
1650 #define STORE_JUMP2(op, loc, to, arg) \
1651   store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1652 
1653 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1654 #define INSERT_JUMP(op, loc, to) \
1655   insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1656 
1657 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1658 #define INSERT_JUMP2(op, loc, to, arg) \
1659   insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1660 
1661 
1662 /* This is not an arbitrary limit: the arguments which represent offsets
1663    into the pattern are two bytes long.  So if 2^16 bytes turns out to
1664    be too small, many things would have to change.  */
1665 /* Any other compiler which, like MSC, has allocation limit below 2^16
1666    bytes will have to use approach similar to what was done below for
1667    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1668    reallocating to 0 bytes.  Such thing is not going to work too well.
1669    You have been warned!!  */
1670 #if defined _MSC_VER  && !defined WIN32
1671 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1672    The REALLOC define eliminates a flurry of conversion warnings,
1673    but is not required. */
1674 # define MAX_BUF_SIZE  65500L
1675 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1676 #else
1677 # define MAX_BUF_SIZE (1L << 16)
1678 # define REALLOC(p,s) realloc ((p), (s))
1679 #endif
1680 
1681 /* Extend the buffer by twice its current size via realloc and
1682    reset the pointers that pointed into the old block to point to the
1683    correct places in the new one.  If extending the buffer results in it
1684    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
1685 #define EXTEND_BUFFER()                                                 \
1686   do {                                                                  \
1687     unsigned char *old_buffer = bufp->buffer;                           \
1688     if (bufp->allocated == MAX_BUF_SIZE)                                \
1689       return REG_ESIZE;                                                 \
1690     bufp->allocated <<= 1;                                              \
1691     if (bufp->allocated > MAX_BUF_SIZE)                                 \
1692       bufp->allocated = MAX_BUF_SIZE;                                   \
1693     bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1694     if (bufp->buffer == NULL)                                           \
1695       return REG_ESPACE;                                                \
1696     /* If the buffer moved, move all the pointers into it.  */          \
1697     if (old_buffer != bufp->buffer)                                     \
1698       {                                                                 \
1699         b = (b - old_buffer) + bufp->buffer;                            \
1700         begalt = (begalt - old_buffer) + bufp->buffer;                  \
1701         if (fixup_alt_jump)                                             \
1702           fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1703         if (laststart)                                                  \
1704           laststart = (laststart - old_buffer) + bufp->buffer;          \
1705         if (pending_exact)                                              \
1706           pending_exact = (pending_exact - old_buffer) + bufp->buffer;  \
1707       }                                                                 \
1708   } while (0)
1709 
1710 
1711 /* Since we have one byte reserved for the register number argument to
1712    {start,stop}_memory, the maximum number of groups we can report
1713    things about is what fits in that byte.  */
1714 #define MAX_REGNUM 255
1715 
1716 /* But patterns can have more than `MAX_REGNUM' registers.  We just
1717    ignore the excess.  */
1718 typedef unsigned regnum_t;
1719 
1720 
1721 /* Macros for the compile stack.  */
1722 
1723 /* Since offsets can go either forwards or backwards, this type needs to
1724    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
1725 /* int may be not enough when sizeof(int) == 2.  */
1726 typedef long pattern_offset_t;
1727 
1728 typedef struct
1729 {
1730   pattern_offset_t begalt_offset;
1731   pattern_offset_t fixup_alt_jump;
1732   pattern_offset_t inner_group_offset;
1733   pattern_offset_t laststart_offset;
1734   regnum_t regnum;
1735 } compile_stack_elt_t;
1736 
1737 
1738 typedef struct
1739 {
1740   compile_stack_elt_t *stack;
1741   unsigned size;
1742   unsigned avail;                       /* Offset of next open position.  */
1743 } compile_stack_type;
1744 
1745 
1746 #define INIT_COMPILE_STACK_SIZE 32
1747 
1748 #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1749 #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1750 
1751 /* The next available element.  */
1752 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1753 
1754 
1755 /* Set the bit for character C in a list.  */
1756 #define SET_LIST_BIT(c)                               \
1757   (b[((unsigned char) (c)) / BYTEWIDTH]               \
1758    |= 1 << (((unsigned char) c) % BYTEWIDTH))
1759 
1760 
1761 /* Get the next unsigned number in the uncompiled pattern.  */
1762 #define GET_UNSIGNED_NUMBER(num)                                        \
1763   { if (p != pend)                                                      \
1764      {                                                                  \
1765        PATFETCH (c);                                                    \
1766        while ('0' <= c && c <= '9')                                     \
1767          {                                                              \
1768            if (num < 0)                                                 \
1769               num = 0;                                                  \
1770            num = num * 10 + c - '0';                                    \
1771            if (p == pend)                                               \
1772               break;                                                    \
1773            PATFETCH (c);                                                \
1774          }                                                              \
1775        }                                                                \
1776     }
1777 
1778 #if defined _LIBC || WIDE_CHAR_SUPPORT
1779 /* The GNU C library provides support for user-defined character classes
1780    and the functions from ISO C amendement 1.  */
1781 # ifdef CHARCLASS_NAME_MAX
1782 #  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1783 # else
1784 /* This shouldn't happen but some implementation might still have this
1785    problem.  Use a reasonable default value.  */
1786 #  define CHAR_CLASS_MAX_LENGTH 256
1787 # endif
1788 
1789 # ifdef _LIBC
1790 #  define IS_CHAR_CLASS(string) __wctype (string)
1791 # else
1792 #  define IS_CHAR_CLASS(string) wctype (string)
1793 # endif
1794 #else
1795 # define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1796 
1797 # define IS_CHAR_CLASS(string)                                          \
1798    (STREQ (string, "alpha") || STREQ (string, "upper")                  \
1799     || STREQ (string, "lower") || STREQ (string, "digit")               \
1800     || STREQ (string, "alnum") || STREQ (string, "xdigit")              \
1801     || STREQ (string, "space") || STREQ (string, "print")               \
1802     || STREQ (string, "punct") || STREQ (string, "graph")               \
1803     || STREQ (string, "cntrl") || STREQ (string, "blank"))
1804 #endif
1805 
1806 #ifndef MATCH_MAY_ALLOCATE
1807 
1808 /* If we cannot allocate large objects within re_match_2_internal,
1809    we make the fail stack and register vectors global.
1810    The fail stack, we grow to the maximum size when a regexp
1811    is compiled.
1812    The register vectors, we adjust in size each time we
1813    compile a regexp, according to the number of registers it needs.  */
1814 
1815 static fail_stack_type fail_stack;
1816 
1817 /* Size with which the following vectors are currently allocated.
1818    That is so we can make them bigger as needed,
1819    but never make them smaller.  */
1820 static int regs_allocated_size;
1821 
1822 static const char **     regstart, **     regend;
1823 static const char ** old_regstart, ** old_regend;
1824 static const char **best_regstart, **best_regend;
1825 static register_info_type *reg_info;
1826 static const char **reg_dummy;
1827 static register_info_type *reg_info_dummy;
1828 
1829 /* Make the register vectors big enough for NUM_REGS registers,
1830    but don't make them smaller.  */
1831 
1832 static
1833 regex_grow_registers (num_regs)
1834      int num_regs;
1835 {
1836   if (num_regs > regs_allocated_size)
1837     {
1838       RETALLOC_IF (regstart,     num_regs, const char *);
1839       RETALLOC_IF (regend,       num_regs, const char *);
1840       RETALLOC_IF (old_regstart, num_regs, const char *);
1841       RETALLOC_IF (old_regend,   num_regs, const char *);
1842       RETALLOC_IF (best_regstart, num_regs, const char *);
1843       RETALLOC_IF (best_regend,  num_regs, const char *);
1844       RETALLOC_IF (reg_info,     num_regs, register_info_type);
1845       RETALLOC_IF (reg_dummy,    num_regs, const char *);
1846       RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1847 
1848       regs_allocated_size = num_regs;
1849     }
1850 }
1851 
1852 #endif /* not MATCH_MAY_ALLOCATE */
1853 
1854 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1855                                                  compile_stack,
1856                                                  regnum_t regnum));
1857 
1858 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1859    Returns one of error codes defined in `regex.h', or zero for success.
1860 
1861    Assumes the `allocated' (and perhaps `buffer') and `translate'
1862    fields are set in BUFP on entry.
1863 
1864    If it succeeds, results are put in BUFP (if it returns an error, the
1865    contents of BUFP are undefined):
1866      `buffer' is the compiled pattern;
1867      `syntax' is set to SYNTAX;
1868      `used' is set to the length of the compiled pattern;
1869      `fastmap_accurate' is zero;
1870      `re_nsub' is the number of subexpressions in PATTERN;
1871      `not_bol' and `not_eol' are zero;
1872 
1873    The `fastmap' and `newline_anchor' fields are neither
1874    examined nor set.  */
1875 
1876 /* Return, freeing storage we allocated.  */
1877 #define FREE_STACK_RETURN(value)                \
1878   return (free (compile_stack.stack), value)
1879 
1880 static reg_errcode_t
1881 regex_compile (pattern, size, syntax, bufp)
1882      const char *pattern;
1883      size_t size;
1884      reg_syntax_t syntax;
1885      struct re_pattern_buffer *bufp;
1886 {
1887   /* We fetch characters from PATTERN here.  Even though PATTERN is
1888      `char *' (i.e., signed), we declare these variables as unsigned, so
1889      they can be reliably used as array indices.  */
1890   register unsigned char c, c1;
1891 
1892   /* A random temporary spot in PATTERN.  */
1893   const char *p1;
1894 
1895   /* Points to the end of the buffer, where we should append.  */
1896   register unsigned char *b;
1897 
1898   /* Keeps track of unclosed groups.  */
1899   compile_stack_type compile_stack;
1900 
1901   /* Points to the current (ending) position in the pattern.  */
1902   const char *p = pattern;
1903   const char *pend = pattern + size;
1904 
1905   /* How to translate the characters in the pattern.  */
1906   RE_TRANSLATE_TYPE translate = bufp->translate;
1907 
1908   /* Address of the count-byte of the most recently inserted `exactn'
1909      command.  This makes it possible to tell if a new exact-match
1910      character can be added to that command or if the character requires
1911      a new `exactn' command.  */
1912   unsigned char *pending_exact = 0;
1913 
1914   /* Address of start of the most recently finished expression.
1915      This tells, e.g., postfix * where to find the start of its
1916      operand.  Reset at the beginning of groups and alternatives.  */
1917   unsigned char *laststart = 0;
1918 
1919   /* Address of beginning of regexp, or inside of last group.  */
1920   unsigned char *begalt;
1921 
1922   /* Place in the uncompiled pattern (i.e., the {) to
1923      which to go back if the interval is invalid.  */
1924   const char *beg_interval;
1925 
1926   /* Address of the place where a forward jump should go to the end of
1927      the containing expression.  Each alternative of an `or' -- except the
1928      last -- ends with a forward jump of this sort.  */
1929   unsigned char *fixup_alt_jump = 0;
1930 
1931   /* Counts open-groups as they are encountered.  Remembered for the
1932      matching close-group on the compile stack, so the same register
1933      number is put in the stop_memory as the start_memory.  */
1934   regnum_t regnum = 0;
1935 
1936 #ifdef DEBUG
1937   DEBUG_PRINT1 ("\nCompiling pattern: ");
1938   if (debug)
1939     {
1940       unsigned debug_count;
1941 
1942       for (debug_count = 0; debug_count < size; debug_count++)
1943         putchar (pattern[debug_count]);
1944       putchar ('\n');
1945     }
1946 #endif /* DEBUG */
1947 
1948   /* Initialize the compile stack.  */
1949   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1950   if (compile_stack.stack == NULL)
1951     return REG_ESPACE;
1952 
1953   compile_stack.size = INIT_COMPILE_STACK_SIZE;
1954   compile_stack.avail = 0;
1955 
1956   /* Initialize the pattern buffer.  */
1957   bufp->syntax = syntax;
1958   bufp->fastmap_accurate = 0;
1959   bufp->not_bol = bufp->not_eol = 0;
1960 
1961   /* Set `used' to zero, so that if we return an error, the pattern
1962      printer (for debugging) will think there's no pattern.  We reset it
1963      at the end.  */
1964   bufp->used = 0;
1965 
1966   /* Always count groups, whether or not bufp->no_sub is set.  */
1967   bufp->re_nsub = 0;
1968 
1969 #if !defined emacs && !defined SYNTAX_TABLE
1970   /* Initialize the syntax table.  */
1971    init_syntax_once ();
1972 #endif
1973 
1974   if (bufp->allocated == 0)
1975     {
1976       if (bufp->buffer)
1977         { /* If zero allocated, but buffer is non-null, try to realloc
1978              enough space.  This loses if buffer's address is bogus, but
1979              that is the user's responsibility.  */
1980           RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1981         }
1982       else
1983         { /* Caller did not allocate a buffer.  Do it for them.  */
1984           bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1985         }
1986       if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1987 
1988       bufp->allocated = INIT_BUF_SIZE;
1989     }
1990 
1991   begalt = b = bufp->buffer;
1992 
1993   /* Loop through the uncompiled pattern until we're at the end.  */
1994   while (p != pend)
1995     {
1996       PATFETCH (c);
1997 
1998       switch (c)
1999         {
2000         case '^':
2001           {
2002             if (   /* If at start of pattern, it's an operator.  */
2003                    p == pattern + 1
2004                    /* If context independent, it's an operator.  */
2005                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2006                    /* Otherwise, depends on what's come before.  */
2007                 || at_begline_loc_p (pattern, p, syntax))
2008               BUF_PUSH (begline);
2009             else
2010               goto normal_char;
2011           }
2012           break;
2013 
2014 
2015         case '$':
2016           {
2017             if (   /* If at end of pattern, it's an operator.  */
2018                    p == pend
2019                    /* If context independent, it's an operator.  */
2020                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2021                    /* Otherwise, depends on what's next.  */
2022                 || at_endline_loc_p (p, pend, syntax))
2023                BUF_PUSH (endline);
2024              else
2025                goto normal_char;
2026            }
2027            break;
2028 
2029 
2030         case '+':
2031         case '?':
2032           if ((syntax & RE_BK_PLUS_QM)
2033               || (syntax & RE_LIMITED_OPS))
2034             goto normal_char;
2035         handle_plus:
2036         case '*':
2037           /* If there is no previous pattern... */
2038           if (!laststart)
2039             {
2040               if (syntax & RE_CONTEXT_INVALID_OPS)
2041                 FREE_STACK_RETURN (REG_BADRPT);
2042               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2043                 goto normal_char;
2044             }
2045 
2046           {
2047             /* Are we optimizing this jump?  */
2048             boolean keep_string_p = false;
2049 
2050             /* 1 means zero (many) matches is allowed.  */
2051             char zero_times_ok = 0, many_times_ok = 0;
2052 
2053             /* If there is a sequence of repetition chars, collapse it
2054                down to just one (the right one).  We can't combine
2055                interval operators with these because of, e.g., `a{2}*',
2056                which should only match an even number of `a's.  */
2057 
2058             for (;;)
2059               {
2060                 zero_times_ok |= c != '+';
2061                 many_times_ok |= c != '?';
2062 
2063                 if (p == pend)
2064                   break;
2065 
2066                 PATFETCH (c);
2067 
2068                 if (c == '*'
2069                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2070                   ;
2071 
2072                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2073                   {
2074                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2075 
2076                     PATFETCH (c1);
2077                     if (!(c1 == '+' || c1 == '?'))
2078                       {
2079                         PATUNFETCH;
2080                         PATUNFETCH;
2081                         break;
2082                       }
2083 
2084                     c = c1;
2085                   }
2086                 else
2087                   {
2088                     PATUNFETCH;
2089                     break;
2090                   }
2091 
2092                 /* If we get here, we found another repeat character.  */
2093                }
2094 
2095             /* Star, etc. applied to an empty pattern is equivalent
2096                to an empty pattern.  */
2097             if (!laststart)
2098               break;
2099 
2100             /* Now we know whether or not zero matches is allowed
2101                and also whether or not two or more matches is allowed.  */
2102             if (many_times_ok)
2103               { /* More than one repetition is allowed, so put in at the
2104                    end a backward relative jump from `b' to before the next
2105                    jump we're going to put in below (which jumps from
2106                    laststart to after this jump).
2107 
2108                    But if we are at the `*' in the exact sequence `.*\n',
2109                    insert an unconditional jump backwards to the .,
2110                    instead of the beginning of the loop.  This way we only
2111                    push a failure point once, instead of every time
2112                    through the loop.  */
2113                 assert (p - 1 > pattern);
2114 
2115                 /* Allocate the space for the jump.  */
2116                 GET_BUFFER_SPACE (3);
2117 
2118                 /* We know we are not at the first character of the pattern,
2119                    because laststart was nonzero.  And we've already
2120                    incremented `p', by the way, to be the character after
2121                    the `*'.  Do we have to do something analogous here
2122                    for null bytes, because of RE_DOT_NOT_NULL?  */
2123                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2124                     && zero_times_ok
2125                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2126                     && !(syntax & RE_DOT_NEWLINE))
2127                   { /* We have .*\n.  */
2128                     STORE_JUMP (jump, b, laststart);
2129                     keep_string_p = true;
2130                   }
2131                 else
2132                   /* Anything else.  */
2133                   STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2134 
2135                 /* We've added more stuff to the buffer.  */
2136                 b += 3;
2137               }
2138 
2139             /* On failure, jump from laststart to b + 3, which will be the
2140                end of the buffer after this jump is inserted.  */
2141             GET_BUFFER_SPACE (3);
2142             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2143                                        : on_failure_jump,
2144                          laststart, b + 3);
2145             pending_exact = 0;
2146             b += 3;
2147 
2148             if (!zero_times_ok)
2149               {
2150                 /* At least one repetition is required, so insert a
2151                    `dummy_failure_jump' before the initial
2152                    `on_failure_jump' instruction of the loop. This
2153                    effects a skip over that instruction the first time
2154                    we hit that loop.  */
2155                 GET_BUFFER_SPACE (3);
2156                 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2157                 b += 3;
2158               }
2159             }
2160           break;
2161 
2162 
2163         case '.':
2164           laststart = b;
2165           BUF_PUSH (anychar);
2166           break;
2167 
2168 
2169         case '[':
2170           {
2171             boolean had_char_class = false;
2172 
2173             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2174 
2175             /* Ensure that we have enough space to push a charset: the
2176                opcode, the length count, and the bitset; 34 bytes in all.  */
2177             GET_BUFFER_SPACE (34);
2178 
2179             laststart = b;
2180 
2181             /* We test `*p == '^' twice, instead of using an if
2182                statement, so we only need one BUF_PUSH.  */
2183             BUF_PUSH (*p == '^' ? charset_not : charset);
2184             if (*p == '^')
2185               p++;
2186 
2187             /* Remember the first position in the bracket expression.  */
2188             p1 = p;
2189 
2190             /* Push the number of bytes in the bitmap.  */
2191             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2192 
2193             /* Clear the whole map.  */
2194             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2195 
2196             /* charset_not matches newline according to a syntax bit.  */
2197             if ((re_opcode_t) b[-2] == charset_not
2198                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2199               SET_LIST_BIT ('\n');
2200 
2201             /* Read in characters and ranges, setting map bits.  */
2202             for (;;)
2203               {
2204                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2205 
2206                 PATFETCH (c);
2207 
2208                 /* \ might escape characters inside [...] and [^...].  */
2209                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2210                   {
2211                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2212 
2213                     PATFETCH (c1);
2214                     SET_LIST_BIT (c1);
2215                     continue;
2216                   }
2217 
2218                 /* Could be the end of the bracket expression.  If it's
2219                    not (i.e., when the bracket expression is `[]' so
2220                    far), the ']' character bit gets set way below.  */
2221                 if (c == ']' && p != p1 + 1)
2222                   break;
2223 
2224                 /* Look ahead to see if it's a range when the last thing
2225                    was a character class.  */
2226                 if (had_char_class && c == '-' && *p != ']')
2227                   FREE_STACK_RETURN (REG_ERANGE);
2228 
2229                 /* Look ahead to see if it's a range when the last thing
2230                    was a character: if this is a hyphen not at the
2231                    beginning or the end of a list, then it's the range
2232                    operator.  */
2233                 if (c == '-'
2234                     && !(p - 2 >= pattern && p[-2] == '[')
2235                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2236                     && *p != ']')
2237                   {
2238                     reg_errcode_t ret
2239                       = compile_range (&p, pend, translate, syntax, b);
2240                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2241                   }
2242 
2243                 else if (p[0] == '-' && p[1] != ']')
2244                   { /* This handles ranges made up of characters only.  */
2245                     reg_errcode_t ret;
2246 
2247                     /* Move past the `-'.  */
2248                     PATFETCH (c1);
2249 
2250                     ret = compile_range (&p, pend, translate, syntax, b);
2251                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2252                   }
2253 
2254                 /* See if we're at the beginning of a possible character
2255                    class.  */
2256 
2257                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2258                   { /* Leave room for the null.  */
2259                     char str[CHAR_CLASS_MAX_LENGTH + 1];
2260 
2261                     PATFETCH (c);
2262                     c1 = 0;
2263 
2264                     /* If pattern is `[[:'.  */
2265                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2266 
2267                     for (;;)
2268                       {
2269                         PATFETCH (c);
2270                         if ((c == ':' && *p == ']') || p == pend)
2271                           break;
2272                         if (c1 < CHAR_CLASS_MAX_LENGTH)
2273                           str[c1++] = c;
2274                         else
2275                           /* This is in any case an invalid class name.  */
2276                           str[0] = '\0';
2277                       }
2278                     str[c1] = '\0';
2279 
2280                     /* If isn't a word bracketed by `[:' and `:]':
2281                        undo the ending character, the letters, and leave
2282                        the leading `:' and `[' (but set bits for them).  */
2283                     if (c == ':' && *p == ']')
2284                       {
2285 #if defined _LIBC || WIDE_CHAR_SUPPORT
2286                         boolean is_lower = STREQ (str, "lower");
2287                         boolean is_upper = STREQ (str, "upper");
2288                         wctype_t wt;
2289                         int ch;
2290 
2291                         wt = IS_CHAR_CLASS (str);
2292                         if (wt == 0)
2293                           FREE_STACK_RETURN (REG_ECTYPE);
2294 
2295                         /* Throw away the ] at the end of the character
2296                            class.  */
2297                         PATFETCH (c);
2298 
2299                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2300 
2301                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2302                           {
2303 # ifdef _LIBC
2304                             if (__iswctype (__btowc (ch), wt))
2305                               SET_LIST_BIT (ch);
2306 # else
2307                             if (iswctype (btowc (ch), wt))
2308                               SET_LIST_BIT (ch);
2309 # endif
2310 
2311                             if (translate && (is_upper || is_lower)
2312                                 && (ISUPPER (ch) || ISLOWER (ch)))
2313                               SET_LIST_BIT (ch);
2314                           }
2315 
2316                         had_char_class = true;
2317 #else
2318                         int ch;
2319                         boolean is_alnum = STREQ (str, "alnum");
2320                         boolean is_alpha = STREQ (str, "alpha");
2321                         boolean is_blank = STREQ (str, "blank");
2322                         boolean is_cntrl = STREQ (str, "cntrl");
2323                         boolean is_digit = STREQ (str, "digit");
2324                         boolean is_graph = STREQ (str, "graph");
2325                         boolean is_lower = STREQ (str, "lower");
2326                         boolean is_print = STREQ (str, "print");
2327                         boolean is_punct = STREQ (str, "punct");
2328                         boolean is_space = STREQ (str, "space");
2329                         boolean is_upper = STREQ (str, "upper");
2330                         boolean is_xdigit = STREQ (str, "xdigit");
2331 
2332                         if (!IS_CHAR_CLASS (str))
2333                           FREE_STACK_RETURN (REG_ECTYPE);
2334 
2335                         /* Throw away the ] at the end of the character
2336                            class.  */
2337                         PATFETCH (c);
2338 
2339                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2340 
2341                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2342                           {
2343                             /* This was split into 3 if's to
2344                                avoid an arbitrary limit in some compiler.  */
2345                             if (   (is_alnum  && ISALNUM (ch))
2346                                 || (is_alpha  && ISALPHA (ch))
2347                                 || (is_blank  && ISBLANK (ch))
2348                                 || (is_cntrl  && ISCNTRL (ch)))
2349                               SET_LIST_BIT (ch);
2350                             if (   (is_digit  && ISDIGIT (ch))
2351                                 || (is_graph  && ISGRAPH (ch))
2352                                 || (is_lower  && ISLOWER (ch))
2353                                 || (is_print  && ISPRINT (ch)))
2354                               SET_LIST_BIT (ch);
2355                             if (   (is_punct  && ISPUNCT (ch))
2356                                 || (is_space  && ISSPACE (ch))
2357                                 || (is_upper  && ISUPPER (ch))
2358                                 || (is_xdigit && ISXDIGIT (ch)))
2359                               SET_LIST_BIT (ch);
2360                             if (   translate && (is_upper || is_lower)
2361                                 && (ISUPPER (ch) || ISLOWER (ch)))
2362                               SET_LIST_BIT (ch);
2363                           }
2364                         had_char_class = true;
2365 #endif  /* libc || wctype.h */
2366                       }
2367                     else
2368                       {
2369                         c1++;
2370                         while (c1--)
2371                           PATUNFETCH;
2372                         SET_LIST_BIT ('[');
2373                         SET_LIST_BIT (':');
2374                         had_char_class = false;
2375                       }
2376                   }
2377                 else
2378                   {
2379                     had_char_class = false;
2380                     SET_LIST_BIT (c);
2381                   }
2382               }
2383 
2384             /* Discard any (non)matching list bytes that are all 0 at the
2385                end of the map.  Decrease the map-length byte too.  */
2386             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2387               b[-1]--;
2388             b += b[-1];
2389           }
2390           break;
2391 
2392 
2393         case '(':
2394           if (syntax & RE_NO_BK_PARENS)
2395             goto handle_open;
2396           else
2397             goto normal_char;
2398 
2399 
2400         case ')':
2401           if (syntax & RE_NO_BK_PARENS)
2402             goto handle_close;
2403           else
2404             goto normal_char;
2405 
2406 
2407         case '\n':
2408           if (syntax & RE_NEWLINE_ALT)
2409             goto handle_alt;
2410           else
2411             goto normal_char;
2412 
2413 
2414         case '|':
2415           if (syntax & RE_NO_BK_VBAR)
2416             goto handle_alt;
2417           else
2418             goto normal_char;
2419 
2420 
2421         case '{':
2422            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2423              goto handle_interval;
2424            else
2425              goto normal_char;
2426 
2427 
2428         case '\\':
2429           if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2430 
2431           /* Do not translate the character after the \, so that we can
2432              distinguish, e.g., \B from \b, even if we normally would
2433              translate, e.g., B to b.  */
2434           PATFETCH_RAW (c);
2435 
2436           switch (c)
2437             {
2438             case '(':
2439               if (syntax & RE_NO_BK_PARENS)
2440                 goto normal_backslash;
2441 
2442             handle_open:
2443               bufp->re_nsub++;
2444               regnum++;
2445 
2446               if (COMPILE_STACK_FULL)
2447                 {
2448                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
2449                             compile_stack_elt_t);
2450                   if (compile_stack.stack == NULL) return REG_ESPACE;
2451 
2452                   compile_stack.size <<= 1;
2453                 }
2454 
2455               /* These are the values to restore when we hit end of this
2456                  group.  They are all relative offsets, so that if the
2457                  whole pattern moves because of realloc, they will still
2458                  be valid.  */
2459               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2460               COMPILE_STACK_TOP.fixup_alt_jump
2461                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2462               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2463               COMPILE_STACK_TOP.regnum = regnum;
2464 
2465               /* We will eventually replace the 0 with the number of
2466                  groups inner to this one.  But do not push a
2467                  start_memory for groups beyond the last one we can
2468                  represent in the compiled pattern.  */
2469               if (regnum <= MAX_REGNUM)
2470                 {
2471                   COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2472                   BUF_PUSH_3 (start_memory, regnum, 0);
2473                 }
2474 
2475               compile_stack.avail++;
2476 
2477               fixup_alt_jump = 0;
2478               laststart = 0;
2479               begalt = b;
2480               /* If we've reached MAX_REGNUM groups, then this open
2481                  won't actually generate any code, so we'll have to
2482                  clear pending_exact explicitly.  */
2483               pending_exact = 0;
2484               break;
2485 
2486 
2487             case ')':
2488               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2489 
2490               if (COMPILE_STACK_EMPTY)
2491                 {
2492                   if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2493                     goto normal_backslash;
2494                   else
2495                     FREE_STACK_RETURN (REG_ERPAREN);
2496                 }
2497 
2498             handle_close:
2499               if (fixup_alt_jump)
2500                 { /* Push a dummy failure point at the end of the
2501                      alternative for a possible future
2502                      `pop_failure_jump' to pop.  See comments at
2503                      `push_dummy_failure' in `re_match_2'.  */
2504                   BUF_PUSH (push_dummy_failure);
2505 
2506                   /* We allocated space for this jump when we assigned
2507                      to `fixup_alt_jump', in the `handle_alt' case below.  */
2508                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2509                 }
2510 
2511               /* See similar code for backslashed left paren above.  */
2512               if (COMPILE_STACK_EMPTY)
2513                 {
2514                   if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2515                     goto normal_char;
2516                   else
2517                     FREE_STACK_RETURN (REG_ERPAREN);
2518                 }
2519 
2520               /* Since we just checked for an empty stack above, this
2521                  ``can't happen''.  */
2522               assert (compile_stack.avail != 0);
2523               {
2524                 /* We don't just want to restore into `regnum', because
2525                    later groups should continue to be numbered higher,
2526                    as in `(ab)c(de)' -- the second group is #2.  */
2527                 regnum_t this_group_regnum;
2528 
2529                 compile_stack.avail--;
2530                 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2531                 fixup_alt_jump
2532                   = COMPILE_STACK_TOP.fixup_alt_jump
2533                     ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2534                     : 0;
2535                 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2536                 this_group_regnum = COMPILE_STACK_TOP.regnum;
2537                 /* If we've reached MAX_REGNUM groups, then this open
2538                    won't actually generate any code, so we'll have to
2539                    clear pending_exact explicitly.  */
2540                 pending_exact = 0;
2541 
2542                 /* We're at the end of the group, so now we know how many
2543                    groups were inside this one.  */
2544                 if (this_group_regnum <= MAX_REGNUM)
2545                   {
2546                     unsigned char *inner_group_loc
2547                       = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2548 
2549                     *inner_group_loc = regnum - this_group_regnum;
2550                     BUF_PUSH_3 (stop_memory, this_group_regnum,
2551                                 regnum - this_group_regnum);
2552                   }
2553               }
2554               break;
2555 
2556 
2557             case '|':                                   /* `\|'.  */
2558               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2559                 goto normal_backslash;
2560             handle_alt:
2561               if (syntax & RE_LIMITED_OPS)
2562                 goto normal_char;
2563 
2564               /* Insert before the previous alternative a jump which
2565                  jumps to this alternative if the former fails.  */
2566               GET_BUFFER_SPACE (3);
2567               INSERT_JUMP (on_failure_jump, begalt, b + 6);
2568               pending_exact = 0;
2569               b += 3;
2570 
2571               /* The alternative before this one has a jump after it
2572                  which gets executed if it gets matched.  Adjust that
2573                  jump so it will jump to this alternative's analogous
2574                  jump (put in below, which in turn will jump to the next
2575                  (if any) alternative's such jump, etc.).  The last such
2576                  jump jumps to the correct final destination.  A picture:
2577                           _____ _____
2578                           |   | |   |
2579                           |   v |   v
2580                          a | b   | c
2581 
2582                  If we are at `b', then fixup_alt_jump right now points to a
2583                  three-byte space after `a'.  We'll put in the jump, set
2584                  fixup_alt_jump to right after `b', and leave behind three
2585                  bytes which we'll fill in when we get to after `c'.  */
2586 
2587               if (fixup_alt_jump)
2588                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2589 
2590               /* Mark and leave space for a jump after this alternative,
2591                  to be filled in later either by next alternative or
2592                  when know we're at the end of a series of alternatives.  */
2593               fixup_alt_jump = b;
2594               GET_BUFFER_SPACE (3);
2595               b += 3;
2596 
2597               laststart = 0;
2598               begalt = b;
2599               break;
2600 
2601 
2602             case '{':
2603               /* If \{ is a literal.  */
2604               if (!(syntax & RE_INTERVALS)
2605                      /* If we're at `\{' and it's not the open-interval
2606                         operator.  */
2607                   || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2608                   || (p - 2 == pattern  &&  p == pend))
2609                 goto normal_backslash;
2610 
2611             handle_interval:
2612               {
2613                 /* If got here, then the syntax allows intervals.  */
2614 
2615                 /* At least (most) this many matches must be made.  */
2616                 int lower_bound = -1, upper_bound = -1;
2617 
2618                 beg_interval = p - 1;
2619 
2620                 if (p == pend)
2621                   {
2622                     if (!(syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2623                       goto unfetch_interval;
2624                     else
2625                       FREE_STACK_RETURN (REG_EBRACE);
2626                   }
2627 
2628                 GET_UNSIGNED_NUMBER (lower_bound);
2629 
2630                 if (c == ',')
2631                   {
2632                     GET_UNSIGNED_NUMBER (upper_bound);
2633                     if ((!(syntax & RE_NO_BK_BRACES) && c != '\\')
2634                         || ((syntax & RE_NO_BK_BRACES) && c != '}'))
2635                       FREE_STACK_RETURN (REG_BADBR);
2636 
2637                     if (upper_bound < 0)
2638                       upper_bound = RE_DUP_MAX;
2639                   }
2640                 else
2641                   /* Interval such as `{1}' => match exactly once. */
2642                   upper_bound = lower_bound;
2643 
2644                 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2645                     || lower_bound > upper_bound)
2646                   {
2647                     if (!(syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2648                       goto unfetch_interval;
2649                     else
2650                       FREE_STACK_RETURN (REG_BADBR);
2651                   }
2652 
2653                 if (!(syntax & RE_NO_BK_BRACES))
2654                   {
2655                     if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2656 
2657                     PATFETCH (c);
2658                   }
2659 
2660                 if (c != '}')
2661                   {
2662                     if (!(syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2663                       goto unfetch_interval;
2664                     else
2665                       FREE_STACK_RETURN (REG_BADBR);
2666                   }
2667 
2668                 /* We just parsed a valid interval.  */
2669 
2670                 /* If it's invalid to have no preceding re.  */
2671                 if (!laststart)
2672                   {
2673                     if (syntax & RE_CONTEXT_INVALID_OPS)
2674                       FREE_STACK_RETURN (REG_BADRPT);
2675                     else if (syntax & RE_CONTEXT_INDEP_OPS)
2676                       laststart = b;
2677                     else
2678                       goto unfetch_interval;
2679                   }
2680 
2681                 /* If the upper bound is zero, don't want to succeed at
2682                    all; jump from `laststart' to `b + 3', which will be
2683                    the end of the buffer after we insert the jump.  */
2684                  if (upper_bound == 0)
2685                    {
2686                      GET_BUFFER_SPACE (3);
2687                      INSERT_JUMP (jump, laststart, b + 3);
2688                      b += 3;
2689                    }
2690 
2691                  /* Otherwise, we have a nontrivial interval.  When
2692                     we're all done, the pattern will look like:
2693                       set_number_at <jump count> <upper bound>
2694                       set_number_at <succeed_n count> <lower bound>
2695                       succeed_n <after jump addr> <succeed_n count>
2696                       <body of loop>
2697                       jump_n <succeed_n addr> <jump count>
2698                     (The upper bound and `jump_n' are omitted if
2699                     `upper_bound' is 1, though.)  */
2700                  else
2701                    { /* If the upper bound is > 1, we need to insert
2702                         more at the end of the loop.  */
2703                      unsigned nbytes = 10 + (upper_bound > 1) * 10;
2704 
2705                      GET_BUFFER_SPACE (nbytes);
2706 
2707                      /* Initialize lower bound of the `succeed_n', even
2708                         though it will be set during matching by its
2709                         attendant `set_number_at' (inserted next),
2710                         because `re_compile_fastmap' needs to know.
2711                         Jump to the `jump_n' we might insert below.  */
2712                      INSERT_JUMP2 (succeed_n, laststart,
2713                                    b + 5 + (upper_bound > 1) * 5,
2714                                    lower_bound);
2715                      b += 5;
2716 
2717                      /* Code to initialize the lower bound.  Insert
2718                         before the `succeed_n'.  The `5' is the last two
2719                         bytes of this `set_number_at', plus 3 bytes of
2720                         the following `succeed_n'.  */
2721                      insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2722                      b += 5;
2723 
2724                      if (upper_bound > 1)
2725                        { /* More than one repetition is allowed, so
2726                             append a backward jump to the `succeed_n'
2727                             that starts this interval.
2728 
2729                             When we've reached this during matching,
2730                             we'll have matched the interval once, so
2731                             jump back only `upper_bound - 1' times.  */
2732                          STORE_JUMP2 (jump_n, b, laststart + 5,
2733                                       upper_bound - 1);
2734                          b += 5;
2735 
2736                          /* The location we want to set is the second
2737                             parameter of the `jump_n'; that is `b-2' as
2738                             an absolute address.  `laststart' will be
2739                             the `set_number_at' we're about to insert;
2740                             `laststart+3' the number to set, the source
2741                             for the relative address.  But we are
2742                             inserting into the middle of the pattern --
2743                             so everything is getting moved up by 5.
2744                             Conclusion: (b - 2) - (laststart + 3) + 5,
2745                             i.e., b - laststart.
2746 
2747                             We insert this at the beginning of the loop
2748                             so that if we fail during matching, we'll
2749                             reinitialize the bounds.  */
2750                          insert_op2 (set_number_at, laststart, b - laststart,
2751                                      upper_bound - 1, b);
2752                          b += 5;
2753                        }
2754                    }
2755                 pending_exact = 0;
2756                 beg_interval = NULL;
2757               }
2758               break;
2759 
2760             unfetch_interval:
2761               /* If an invalid interval, match the characters as literals.  */
2762                assert (beg_interval);
2763                p = beg_interval;
2764                beg_interval = NULL;
2765 
2766                /* normal_char and normal_backslash need `c'.  */
2767                PATFETCH (c);
2768 
2769                if (!(syntax & RE_NO_BK_BRACES))
2770                  {
2771                    if (p > pattern  &&  p[-1] == '\\')
2772                      goto normal_backslash;
2773                  }
2774                goto normal_char;
2775 
2776 #ifdef emacs
2777             /* There is no way to specify the before_dot and after_dot
2778                operators.  rms says this is ok.  --karl  */
2779             case '=':
2780               BUF_PUSH (at_dot);
2781               break;
2782 
2783             case 's':
2784               laststart = b;
2785               PATFETCH (c);
2786               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2787               break;
2788 
2789             case 'S':
2790               laststart = b;
2791               PATFETCH (c);
2792               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2793               break;
2794 #endif /* emacs */
2795 
2796 
2797             case 'w':
2798               if (syntax & RE_NO_GNU_OPS)
2799                 goto normal_char;
2800               laststart = b;
2801               BUF_PUSH (wordchar);
2802               break;
2803 
2804 
2805             case 'W':
2806               if (syntax & RE_NO_GNU_OPS)
2807                 goto normal_char;
2808               laststart = b;
2809               BUF_PUSH (notwordchar);
2810               break;
2811 
2812 
2813             case '<':
2814               if (syntax & RE_NO_GNU_OPS)
2815                 goto normal_char;
2816               BUF_PUSH (wordbeg);
2817               break;
2818 
2819             case '>':
2820               if (syntax & RE_NO_GNU_OPS)
2821                 goto normal_char;
2822               BUF_PUSH (wordend);
2823               break;
2824 
2825             case 'b':
2826               if (syntax & RE_NO_GNU_OPS)
2827                 goto normal_char;
2828               BUF_PUSH (wordbound);
2829               break;
2830 
2831             case 'B':
2832               if (syntax & RE_NO_GNU_OPS)
2833                 goto normal_char;
2834               BUF_PUSH (notwordbound);
2835               break;
2836 
2837             case '`':
2838               if (syntax & RE_NO_GNU_OPS)
2839                 goto normal_char;
2840               BUF_PUSH (begbuf);
2841               break;
2842 
2843             case '\'':
2844               if (syntax & RE_NO_GNU_OPS)
2845                 goto normal_char;
2846               BUF_PUSH (endbuf);
2847               break;
2848 
2849             case '1': case '2': case '3': case '4': case '5':
2850             case '6': case '7': case '8': case '9':
2851               if (syntax & RE_NO_BK_REFS)
2852                 goto normal_char;
2853 
2854               c1 = c - '0';
2855 
2856               if (c1 > regnum)
2857                 FREE_STACK_RETURN (REG_ESUBREG);
2858 
2859               /* Can't back reference to a subexpression if inside of it.  */
2860               if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2861                 goto normal_char;
2862 
2863               laststart = b;
2864               BUF_PUSH_2 (duplicate, c1);
2865               break;
2866 
2867 
2868             case '+':
2869             case '?':
2870               if (syntax & RE_BK_PLUS_QM)
2871                 goto handle_plus;
2872               else
2873                 goto normal_backslash;
2874 
2875             default:
2876             normal_backslash:
2877               /* You might think it would be useful for \ to mean
2878                  not to translate; but if we don't translate it
2879                  it will never match anything.  */
2880               c = TRANSLATE (c);
2881               goto normal_char;
2882             }
2883           break;
2884 
2885 
2886         default:
2887         /* Expects the character in `c'.  */
2888         normal_char:
2889               /* If no exactn currently being built.  */
2890           if (!pending_exact
2891 
2892               /* If last exactn not at current position.  */
2893               || pending_exact + *pending_exact + 1 != b
2894 
2895               /* We have only one byte following the exactn for the count.  */
2896               || *pending_exact == (1 << BYTEWIDTH) - 1
2897 
2898               /* If followed by a repetition operator.  */
2899               || *p == '*' || *p == '^'
2900               || ((syntax & RE_BK_PLUS_QM)
2901                   ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2902                   : (*p == '+' || *p == '?'))
2903               || ((syntax & RE_INTERVALS)
2904                   && ((syntax & RE_NO_BK_BRACES)
2905                       ? *p == '{'
2906                       : (p[0] == '\\' && p[1] == '{'))))
2907             {
2908               /* Start building a new exactn.  */
2909 
2910               laststart = b;
2911 
2912               BUF_PUSH_2 (exactn, 0);
2913               pending_exact = b - 1;
2914             }
2915 
2916           BUF_PUSH (c);
2917           (*pending_exact)++;
2918           break;
2919         } /* switch (c) */
2920     } /* while p != pend */
2921 
2922 
2923   /* Through the pattern now.  */
2924 
2925   if (fixup_alt_jump)
2926     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2927 
2928   if (!COMPILE_STACK_EMPTY)
2929     FREE_STACK_RETURN (REG_EPAREN);
2930 
2931   /* If we don't want backtracking, force success
2932      the first time we reach the end of the compiled pattern.  */
2933   if (syntax & RE_NO_POSIX_BACKTRACKING)
2934     BUF_PUSH (succeed);
2935 
2936   free (compile_stack.stack);
2937 
2938   /* We have succeeded; set the length of the buffer.  */
2939   bufp->used = b - bufp->buffer;
2940 
2941 #ifdef DEBUG
2942   if (debug)
2943     {
2944       DEBUG_PRINT1 ("\nCompiled pattern: \n");
2945       print_compiled_pattern (bufp);
2946     }
2947 #endif /* DEBUG */
2948 
2949 #ifndef MATCH_MAY_ALLOCATE
2950   /* Initialize the failure stack to the largest possible stack.  This
2951      isn't necessary unless we're trying to avoid calling alloca in
2952      the search and match routines.  */
2953   {
2954     int num_regs = bufp->re_nsub + 1;
2955 
2956     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2957        is strictly greater than re_max_failures, the largest possible stack
2958        is 2 * re_max_failures failure points.  */
2959     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2960       {
2961         fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2962 
2963 # ifdef emacs
2964         if (! fail_stack.stack)
2965           fail_stack.stack
2966             = (fail_stack_elt_t *) xmalloc (fail_stack.size
2967                                             * sizeof (fail_stack_elt_t));
2968         else
2969           fail_stack.stack
2970             = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2971                                              (fail_stack.size
2972                                               * sizeof (fail_stack_elt_t)));
2973 # else /* not emacs */
2974         if (! fail_stack.stack)
2975           fail_stack.stack
2976             = (fail_stack_elt_t *) malloc (fail_stack.size
2977                                            * sizeof (fail_stack_elt_t));
2978         else
2979           fail_stack.stack
2980             = (fail_stack_elt_t *) realloc (fail_stack.stack,
2981                                             (fail_stack.size
2982                                              * sizeof (fail_stack_elt_t)));
2983 # endif /* not emacs */
2984       }
2985 
2986     regex_grow_registers (num_regs);
2987   }
2988 #endif /* not MATCH_MAY_ALLOCATE */
2989 
2990   return REG_NOERROR;
2991 } /* regex_compile */
2992 
2993 /* Subroutines for `regex_compile'.  */
2994 
2995 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
2996 
2997 static void
2998 store_op1 (op, loc, arg)
2999     re_opcode_t op;
3000     unsigned char *loc;
3001     int arg;
3002 {
3003   *loc = (unsigned char) op;
3004   STORE_NUMBER (loc + 1, arg);
3005 }
3006 
3007 
3008 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
3009 
3010 static void
3011 store_op2 (op, loc, arg1, arg2)
3012     re_opcode_t op;
3013     unsigned char *loc;
3014     int arg1, arg2;
3015 {
3016   *loc = (unsigned char) op;
3017   STORE_NUMBER (loc + 1, arg1);
3018   STORE_NUMBER (loc + 3, arg2);
3019 }
3020 
3021 
3022 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3023    for OP followed by two-byte integer parameter ARG.  */
3024 
3025 static void
3026 insert_op1 (op, loc, arg, end)
3027     re_opcode_t op;
3028     unsigned char *loc;
3029     int arg;
3030     unsigned char *end;
3031 {
3032   register unsigned char *pfrom = end;
3033   register unsigned char *pto = end + 3;
3034 
3035   while (pfrom != loc)
3036     *--pto = *--pfrom;
3037 
3038   store_op1 (op, loc, arg);
3039 }
3040 
3041 
3042 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
3043 
3044 static void
3045 insert_op2 (op, loc, arg1, arg2, end)
3046     re_opcode_t op;
3047     unsigned char *loc;
3048     int arg1, arg2;
3049     unsigned char *end;
3050 {
3051   register unsigned char *pfrom = end;
3052   register unsigned char *pto = end + 5;
3053 
3054   while (pfrom != loc)
3055     *--pto = *--pfrom;
3056 
3057   store_op2 (op, loc, arg1, arg2);
3058 }
3059 
3060 
3061 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
3062    after an alternative or a begin-subexpression.  We assume there is at
3063    least one character before the ^.  */
3064 
3065 static boolean
3066 at_begline_loc_p (pattern, p, syntax)
3067     const char *pattern, *p;
3068     reg_syntax_t syntax;
3069 {
3070   const char *prev = p - 2;
3071   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3072 
3073   return
3074        /* After a subexpression?  */
3075        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3076        /* After an alternative?  */
3077     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3078 }
3079 
3080 
3081 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
3082    at least one character after the $, i.e., `P < PEND'.  */
3083 
3084 static boolean
3085 at_endline_loc_p (p, pend, syntax)
3086     const char *p, *pend;
3087     reg_syntax_t syntax;
3088 {
3089   const char *next = p;
3090   boolean next_backslash = *next == '\\';
3091   const char *next_next = p + 1 < pend ? p + 1 : 0;
3092 
3093   return
3094        /* Before a subexpression?  */
3095        (syntax & RE_NO_BK_PARENS ? *next == ')'
3096         : next_backslash && next_next && *next_next == ')')
3097        /* Before an alternative?  */
3098     || (syntax & RE_NO_BK_VBAR ? *next == '|'
3099         : next_backslash && next_next && *next_next == '|');
3100 }
3101 
3102 
3103 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3104    false if it's not.  */
3105 
3106 static boolean
3107 group_in_compile_stack (compile_stack, regnum)
3108     compile_stack_type compile_stack;
3109     regnum_t regnum;
3110 {
3111   int this_element;
3112 
3113   for (this_element = compile_stack.avail - 1;
3114        this_element >= 0;
3115        this_element--)
3116     if (compile_stack.stack[this_element].regnum == regnum)
3117       return true;
3118 
3119   return false;
3120 }
3121 
3122 
3123 /* Read the ending character of a range (in a bracket expression) from the
3124    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
3125    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
3126    Then we set the translation of all bits between the starting and
3127    ending characters (inclusive) in the compiled pattern B.
3128 
3129    Return an error code.
3130 
3131    We use these short variable names so we can use the same macros as
3132    `regex_compile' itself.  */
3133 
3134 static reg_errcode_t
3135 compile_range (p_ptr, pend, translate, syntax, b)
3136     const char **p_ptr, *pend;
3137     RE_TRANSLATE_TYPE translate;
3138     reg_syntax_t syntax;
3139     unsigned char *b;
3140 {
3141   unsigned this_char;
3142 
3143   const char *p = *p_ptr;
3144   reg_errcode_t ret;
3145   char range_start[2];
3146   char range_end[2];
3147   char ch[2];
3148 
3149   if (p == pend)
3150     return REG_ERANGE;
3151 
3152   /* Fetch the endpoints without translating them; the
3153      appropriate translation is done in the bit-setting loop below.  */
3154   range_start[0] = p[-2];
3155   range_start[1] = '\0';
3156   range_end[0] = p[0];
3157   range_end[1] = '\0';
3158 
3159   /* Have to increment the pointer into the pattern string, so the
3160      caller isn't still at the ending character.  */
3161   (*p_ptr)++;
3162 
3163   /* Report an error if the range is empty and the syntax prohibits this.  */
3164   ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3165 
3166   /* Here we see why `this_char' has to be larger than an `unsigned
3167      char' -- we would otherwise go into an infinite loop, since all
3168      characters <= 0xff.  */
3169   ch[1] = '\0';
3170   for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
3171     {
3172       ch[0] = this_char;
3173       if (strcoll (range_start, ch) <= 0 && strcoll (ch, range_end) <= 0)
3174         {
3175           SET_LIST_BIT (TRANSLATE (this_char));
3176           ret = REG_NOERROR;
3177         }
3178     }
3179 
3180   return ret;
3181 }
3182 
3183 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3184    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
3185    characters can start a string that matches the pattern.  This fastmap
3186    is used by re_search to skip quickly over impossible starting points.
3187 
3188    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3189    area as BUFP->fastmap.
3190 
3191    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3192    the pattern buffer.
3193 
3194    Returns 0 if we succeed, -2 if an internal error.   */
3195 
3196 int
3197 re_compile_fastmap (bufp)
3198      struct re_pattern_buffer *bufp;
3199 {
3200   int j, k;
3201 #ifdef MATCH_MAY_ALLOCATE
3202   fail_stack_type fail_stack;
3203 #endif
3204 #ifndef REGEX_MALLOC
3205   char *destination;
3206 #endif
3207 
3208   register char *fastmap = bufp->fastmap;
3209   unsigned char *pattern = bufp->buffer;
3210   unsigned char *p = pattern;
3211   register unsigned char *pend = pattern + bufp->used;
3212 
3213 #ifdef REL_ALLOC
3214   /* This holds the pointer to the failure stack, when
3215      it is allocated relocatably.  */
3216   fail_stack_elt_t *failure_stack_ptr;
3217 #endif
3218 
3219   /* Assume that each path through the pattern can be null until
3220      proven otherwise.  We set this false at the bottom of switch
3221      statement, to which we get only if a particular path doesn't
3222      match the empty string.  */
3223   boolean path_can_be_null = true;
3224 
3225   /* We aren't doing a `succeed_n' to begin with.  */
3226   boolean succeed_n_p = false;
3227 
3228   assert (fastmap != NULL && p != NULL);
3229 
3230   INIT_FAIL_STACK ();
3231   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
3232   bufp->fastmap_accurate = 1;       /* It will be when we're done.  */
3233   bufp->can_be_null = 0;
3234 
3235   while (1)
3236     {
3237       if (p == pend || *p == succeed)
3238         {
3239           /* We have reached the (effective) end of pattern.  */
3240           if (!FAIL_STACK_EMPTY ())
3241             {
3242               bufp->can_be_null |= path_can_be_null;
3243 
3244               /* Reset for next path.  */
3245               path_can_be_null = true;
3246 
3247               p = fail_stack.stack[--fail_stack.avail].pointer;
3248 
3249               continue;
3250             }
3251           else
3252             break;
3253         }
3254 
3255       /* We should never be about to go beyond the end of the pattern.  */
3256       assert (p < pend);
3257 
3258       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3259         {
3260 
3261         /* I guess the idea here is to simply not bother with a fastmap
3262            if a backreference is used, since it's too hard to figure out
3263            the fastmap for the corresponding group.  Setting
3264            `can_be_null' stops `re_search_2' from using the fastmap, so
3265            that is all we do.  */
3266         case duplicate:
3267           bufp->can_be_null = 1;
3268           goto done;
3269 
3270 
3271       /* Following are the cases which match a character.  These end
3272          with `break'.  */
3273 
3274         case exactn:
3275           fastmap[p[1]] = 1;
3276           break;
3277 
3278 
3279         case charset:
3280           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3281             if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3282               fastmap[j] = 1;
3283           break;
3284 
3285 
3286         case charset_not:
3287           /* Chars beyond end of map must be allowed.  */
3288           for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3289             fastmap[j] = 1;
3290 
3291           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3292             if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3293               fastmap[j] = 1;
3294           break;
3295 
3296 
3297         case wordchar:
3298           for (j = 0; j < (1 << BYTEWIDTH); j++)
3299             if (SYNTAX (j) == Sword)
3300               fastmap[j] = 1;
3301           break;
3302 
3303 
3304         case notwordchar:
3305           for (j = 0; j < (1 << BYTEWIDTH); j++)
3306             if (SYNTAX (j) != Sword)
3307               fastmap[j] = 1;
3308           break;
3309 
3310 
3311         case anychar:
3312           {
3313             int fastmap_newline = fastmap['\n'];
3314 
3315             /* `.' matches anything ...  */
3316             for (j = 0; j < (1 << BYTEWIDTH); j++)
3317               fastmap[j] = 1;
3318 
3319             /* ... except perhaps newline.  */
3320             if (!(bufp->syntax & RE_DOT_NEWLINE))
3321               fastmap['\n'] = fastmap_newline;
3322 
3323             /* Return if we have already set `can_be_null'; if we have,
3324                then the fastmap is irrelevant.  Something's wrong here.  */
3325             else if (bufp->can_be_null)
3326               goto done;
3327 
3328             /* Otherwise, have to check alternative paths.  */
3329             break;
3330           }
3331 
3332 #ifdef emacs
3333         case syntaxspec:
3334           k = *p++;
3335           for (j = 0; j < (1 << BYTEWIDTH); j++)
3336             if (SYNTAX (j) == (enum syntaxcode) k)
3337               fastmap[j] = 1;
3338           break;
3339 
3340 
3341         case notsyntaxspec:
3342           k = *p++;
3343           for (j = 0; j < (1 << BYTEWIDTH); j++)
3344             if (SYNTAX (j) != (enum syntaxcode) k)
3345               fastmap[j] = 1;
3346           break;
3347 
3348 
3349       /* All cases after this match the empty string.  These end with
3350          `continue'.  */
3351 
3352 
3353         case before_dot:
3354         case at_dot:
3355         case after_dot:
3356           continue;
3357 #endif /* emacs */
3358 
3359 
3360         case no_op:
3361         case begline:
3362         case endline:
3363         case begbuf:
3364         case endbuf:
3365         case wordbound:
3366         case notwordbound:
3367         case wordbeg:
3368         case wordend:
3369         case push_dummy_failure:
3370           continue;
3371 
3372 
3373         case jump_n:
3374         case pop_failure_jump:
3375         case maybe_pop_jump:
3376         case jump:
3377         case jump_past_alt:
3378         case dummy_failure_jump:
3379           EXTRACT_NUMBER_AND_INCR (j, p);
3380           p += j;
3381           if (j > 0)
3382             continue;
3383 
3384           /* Jump backward implies we just went through the body of a
3385              loop and matched nothing.  Opcode jumped to should be
3386              `on_failure_jump' or `succeed_n'.  Just treat it like an
3387              ordinary jump.  For a * loop, it has pushed its failure
3388              point already; if so, discard that as redundant.  */
3389           if ((re_opcode_t) *p != on_failure_jump
3390               && (re_opcode_t) *p != succeed_n)
3391             continue;
3392 
3393           p++;
3394           EXTRACT_NUMBER_AND_INCR (j, p);
3395           p += j;
3396 
3397           /* If what's on the stack is where we are now, pop it.  */
3398           if (!FAIL_STACK_EMPTY ()
3399               && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3400             fail_stack.avail--;
3401 
3402           continue;
3403 
3404 
3405         case on_failure_jump:
3406         case on_failure_keep_string_jump:
3407         handle_on_failure_jump:
3408           EXTRACT_NUMBER_AND_INCR (j, p);
3409 
3410           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3411              end of the pattern.  We don't want to push such a point,
3412              since when we restore it above, entering the switch will
3413              increment `p' past the end of the pattern.  We don't need
3414              to push such a point since we obviously won't find any more
3415              fastmap entries beyond `pend'.  Such a pattern can match
3416              the null string, though.  */
3417           if (p + j < pend)
3418             {
3419               if (!PUSH_PATTERN_OP (p + j, fail_stack))
3420                 {
3421                   RESET_FAIL_STACK ();
3422                   return -2;
3423                 }
3424             }
3425           else
3426             bufp->can_be_null = 1;
3427 
3428           if (succeed_n_p)
3429             {
3430               EXTRACT_NUMBER_AND_INCR (k, p);   /* Skip the n.  */
3431               succeed_n_p = false;
3432             }
3433 
3434           continue;
3435 
3436 
3437         case succeed_n:
3438           /* Get to the number of times to succeed.  */
3439           p += 2;
3440 
3441           /* Increment p past the n for when k != 0.  */
3442           EXTRACT_NUMBER_AND_INCR (k, p);
3443           if (k == 0)
3444             {
3445               p -= 4;
3446               succeed_n_p = true;  /* Spaghetti code alert.  */
3447               goto handle_on_failure_jump;
3448             }
3449           continue;
3450 
3451 
3452         case set_number_at:
3453           p += 4;
3454           continue;
3455 
3456 
3457         case start_memory:
3458         case stop_memory:
3459           p += 2;
3460           continue;
3461 
3462 
3463         default:
3464           abort (); /* We have listed all the cases.  */
3465         } /* switch *p++ */
3466 
3467       /* Getting here means we have found the possible starting
3468          characters for one path of the pattern -- and that the empty
3469          string does not match.  We need not follow this path further.
3470          Instead, look at the next alternative (remembered on the
3471          stack), or quit if no more.  The test at the top of the loop
3472          does these things.  */
3473       path_can_be_null = false;
3474       p = pend;
3475     } /* while p */
3476 
3477   /* Set `can_be_null' for the last path (also the first path, if the
3478      pattern is empty).  */
3479   bufp->can_be_null |= path_can_be_null;
3480 
3481  done:
3482   RESET_FAIL_STACK ();
3483   return 0;
3484 } /* re_compile_fastmap */
3485 #ifdef _LIBC
3486 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3487 #endif
3488 
3489 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3490    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
3491    this memory for recording register information.  STARTS and ENDS
3492    must be allocated using the malloc library routine, and must each
3493    be at least NUM_REGS * sizeof (regoff_t) bytes long.
3494 
3495    If NUM_REGS == 0, then subsequent matches should allocate their own
3496    register data.
3497 
3498    Unless this function is called, the first search or match using
3499    PATTERN_BUFFER will allocate its own register data, without
3500    freeing the old data.  */
3501 
3502 void
3503 re_set_registers (bufp, regs, num_regs, starts, ends)
3504     struct re_pattern_buffer *bufp;
3505     struct re_registers *regs;
3506     unsigned num_regs;
3507     regoff_t *starts, *ends;
3508 {
3509   if (num_regs)
3510     {
3511       bufp->regs_allocated = REGS_REALLOCATE;
3512       regs->num_regs = num_regs;
3513       regs->start = starts;
3514       regs->end = ends;
3515     }
3516   else
3517     {
3518       bufp->regs_allocated = REGS_UNALLOCATED;
3519       regs->num_regs = 0;
3520       regs->start = regs->end = (regoff_t *) 0;
3521     }
3522 }
3523 #ifdef _LIBC
3524 weak_alias (__re_set_registers, re_set_registers)
3525 #endif
3526 
3527 /* Searching routines.  */
3528 
3529 /* Like re_search_2, below, but only one string is specified, and
3530    doesn't let you say where to stop matching. */
3531 
3532 int
3533 re_search (bufp, string, size, startpos, range, regs)
3534      struct re_pattern_buffer *bufp;
3535      const char *string;
3536      int size, startpos, range;
3537      struct re_registers *regs;
3538 {
3539   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3540                       regs, size);
3541 }
3542 #ifdef _LIBC
3543 weak_alias (__re_search, re_search)
3544 #endif
3545 
3546 
3547 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3548    virtual concatenation of STRING1 and STRING2, starting first at index
3549    STARTPOS, then at STARTPOS + 1, and so on.
3550 
3551    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3552 
3553    RANGE is how far to scan while trying to match.  RANGE = 0 means try
3554    only at STARTPOS; in general, the last start tried is STARTPOS +
3555    RANGE.
3556 
3557    In REGS, return the indices of the virtual concatenation of STRING1
3558    and STRING2 that matched the entire BUFP->buffer and its contained
3559    subexpressions.
3560 
3561    Do not consider matching one past the index STOP in the virtual
3562    concatenation of STRING1 and STRING2.
3563 
3564    We return either the position in the strings at which the match was
3565    found, -1 if no match, or -2 if error (such as failure
3566    stack overflow).  */
3567 
3568 int
3569 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3570      struct re_pattern_buffer *bufp;
3571      const char *string1, *string2;
3572      int size1, size2;
3573      int startpos;
3574      int range;
3575      struct re_registers *regs;
3576      int stop;
3577 {
3578   int val;
3579   register char *fastmap = bufp->fastmap;
3580   register RE_TRANSLATE_TYPE translate = bufp->translate;
3581   int total_size = size1 + size2;
3582   int endpos = startpos + range;
3583 
3584   /* Check for out-of-range STARTPOS.  */
3585   if (startpos < 0 || startpos > total_size)
3586     return -1;
3587 
3588   /* Fix up RANGE if it might eventually take us outside
3589      the virtual concatenation of STRING1 and STRING2.
3590      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
3591   if (endpos < 0)
3592     range = 0 - startpos;
3593   else if (endpos > total_size)
3594     range = total_size - startpos;
3595 
3596   /* If the search isn't to be a backwards one, don't waste time in a
3597      search for a pattern that must be anchored.  */
3598   if (bufp->used > 0 && range > 0
3599       && ((re_opcode_t) bufp->buffer[0] == begbuf
3600           /* `begline' is like `begbuf' if it cannot match at newlines.  */
3601           || ((re_opcode_t) bufp->buffer[0] == begline
3602               && !bufp->newline_anchor)))
3603     {
3604       if (startpos > 0)
3605         return -1;
3606       else
3607         range = 1;
3608     }
3609 
3610 #ifdef emacs
3611   /* In a forward search for something that starts with \=.
3612      don't keep searching past point.  */
3613   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3614     {
3615       range = PT - startpos;
3616       if (range <= 0)
3617         return -1;
3618     }
3619 #endif /* emacs */
3620 
3621   /* Update the fastmap now if not correct already.  */
3622   if (fastmap && !bufp->fastmap_accurate)
3623     if (re_compile_fastmap (bufp) == -2)
3624       return -2;
3625 
3626   /* Loop through the string, looking for a place to start matching.  */
3627   for (;;)
3628     {
3629       /* If a fastmap is supplied, skip quickly over characters that
3630          cannot be the start of a match.  If the pattern can match the
3631          null string, however, we don't need to skip characters; we want
3632          the first null string.  */
3633       if (fastmap && startpos < total_size && !bufp->can_be_null)
3634         {
3635           if (range > 0)        /* Searching forwards.  */
3636             {
3637               register const char *d;
3638               register int lim = 0;
3639               int irange = range;
3640 
3641               if (startpos < size1 && startpos + range >= size1)
3642                 lim = range - (size1 - startpos);
3643 
3644               d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3645 
3646               /* Written out as an if-else to avoid testing `translate'
3647                  inside the loop.  */
3648               if (translate)
3649                 while (range > lim
3650                        && !fastmap[(unsigned char)
3651                                    translate[(unsigned char) *d++]])
3652                   range--;
3653               else
3654                 while (range > lim && !fastmap[(unsigned char) *d++])
3655                   range--;
3656 
3657               startpos += irange - range;
3658             }
3659           else                          /* Searching backwards.  */
3660             {
3661               register char c = (size1 == 0 || startpos >= size1
3662                                  ? string2[startpos - size1]
3663                                  : string1[startpos]);
3664 
3665               if (!fastmap[(unsigned char) TRANSLATE (c)])
3666                 goto advance;
3667             }
3668         }
3669 
3670       /* If can't match the null string, and that's all we have left, fail.  */
3671       if (range >= 0 && startpos == total_size && fastmap
3672           && !bufp->can_be_null)
3673         return -1;
3674 
3675       val = re_match_2_internal (bufp, string1, size1, string2, size2,
3676                                  startpos, regs, stop);
3677 #ifndef REGEX_MALLOC
3678 # ifdef C_ALLOCA
3679       alloca (0);
3680 # endif
3681 #endif
3682 
3683       if (val >= 0)
3684         return startpos;
3685 
3686       if (val == -2)
3687         return -2;
3688 
3689     advance:
3690       if (!range)
3691         break;
3692       else if (range > 0)
3693         {
3694           range--;
3695           startpos++;
3696         }
3697       else
3698         {
3699           range++;
3700           startpos--;
3701         }
3702     }
3703   return -1;
3704 } /* re_search_2 */
3705 #ifdef _LIBC
3706 weak_alias (__re_search_2, re_search_2)
3707 #endif
3708 
3709 /* This converts PTR, a pointer into one of the search strings `string1'
3710    and `string2' into an offset from the beginning of that string.  */
3711 #define POINTER_TO_OFFSET(ptr)                  \
3712   (FIRST_STRING_P (ptr)                         \
3713    ? ((regoff_t) ((ptr) - string1))             \
3714    : ((regoff_t) ((ptr) - string2 + size1)))
3715 
3716 /* Macros for dealing with the split strings in re_match_2.  */
3717 
3718 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3719 
3720 /* Call before fetching a character with *d.  This switches over to
3721    string2 if necessary.  */
3722 #define PREFETCH()                                                      \
3723   while (d == dend)                                                     \
3724     {                                                                   \
3725       /* End of string2 => fail.  */                                    \
3726       if (dend == end_match_2)                                          \
3727         goto fail;                                                      \
3728       /* End of string1 => advance to string2.  */                      \
3729       d = string2;                                                      \
3730       dend = end_match_2;                                               \
3731     }
3732 
3733 
3734 /* Test if at very beginning or at very end of the virtual concatenation
3735    of `string1' and `string2'.  If only one string, it's `string2'.  */
3736 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3737 #define AT_STRINGS_END(d) ((d) == end2)
3738 
3739 
3740 /* Test if D points to a character which is word-constituent.  We have
3741    two special cases to check for: if past the end of string1, look at
3742    the first character in string2; and if before the beginning of
3743    string2, look at the last character in string1.  */
3744 #define WORDCHAR_P(d)                                                   \
3745   (SYNTAX ((d) == end1 ? *string2                                       \
3746            : (d) == string2 - 1 ? *(end1 - 1) : *(d))                   \
3747    == Sword)
3748 
3749 /* Disabled due to a compiler bug -- see comment at case wordbound */
3750 #if 0
3751 /* Test if the character before D and the one at D differ with respect
3752    to being word-constituent.  */
3753 #define AT_WORD_BOUNDARY(d)                                             \
3754   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                             \
3755    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3756 #endif
3757 
3758 /* Free everything we malloc.  */
3759 #ifdef MATCH_MAY_ALLOCATE
3760 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3761 # define FREE_VARIABLES()                                               \
3762   do {                                                                  \
3763     REGEX_FREE_STACK (fail_stack.stack);                                \
3764     FREE_VAR (regstart);                                                \
3765     FREE_VAR (regend);                                                  \
3766     FREE_VAR (old_regstart);                                            \
3767     FREE_VAR (old_regend);                                              \
3768     FREE_VAR (best_regstart);                                           \
3769     FREE_VAR (best_regend);                                             \
3770     FREE_VAR (reg_info);                                                \
3771     FREE_VAR (reg_dummy);                                               \
3772     FREE_VAR (reg_info_dummy);                                          \
3773   } while (0)
3774 #else
3775 # define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
3776 #endif /* not MATCH_MAY_ALLOCATE */
3777 
3778 /* These values must meet several constraints.  They must not be valid
3779    register values; since we have a limit of 255 registers (because
3780    we use only one byte in the pattern for the register number), we can
3781    use numbers larger than 255.  They must differ by 1, because of
3782    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
3783    be larger than the value for the highest register, so we do not try
3784    to actually save any registers when none are active.  */
3785 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3786 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3787 
3788 /* Matching routines.  */
3789 
3790 #ifndef emacs   /* Emacs never uses this.  */
3791 /* re_match is like re_match_2 except it takes only a single string.  */
3792 
3793 int
3794 re_match (bufp, string, size, pos, regs)
3795      struct re_pattern_buffer *bufp;
3796      const char *string;
3797      int size, pos;
3798      struct re_registers *regs;
3799 {
3800   int result = re_match_2_internal (bufp, NULL, 0, string, size,
3801                                     pos, regs, size);
3802 # ifndef REGEX_MALLOC
3803 #  ifdef C_ALLOCA
3804   alloca (0);
3805 #  endif
3806 # endif
3807   return result;
3808 }
3809 # ifdef _LIBC
3810 weak_alias (__re_match, re_match)
3811 # endif
3812 #endif /* not emacs */
3813 
3814 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3815                                                     unsigned char *end,
3816                                                 register_info_type *reg_info));
3817 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3818                                                   unsigned char *end,
3819                                                 register_info_type *reg_info));
3820 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3821                                                         unsigned char *end,
3822                                                 register_info_type *reg_info));
3823 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3824                                      int len, char *translate));
3825 
3826 /* re_match_2 matches the compiled pattern in BUFP against the
3827    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3828    and SIZE2, respectively).  We start matching at POS, and stop
3829    matching at STOP.
3830 
3831    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3832    store offsets for the substring each group matched in REGS.  See the
3833    documentation for exactly how many groups we fill.
3834 
3835    We return -1 if no match, -2 if an internal error (such as the
3836    failure stack overflowing).  Otherwise, we return the length of the
3837    matched substring.  */
3838 
3839 int
3840 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3841      struct re_pattern_buffer *bufp;
3842      const char *string1, *string2;
3843      int size1, size2;
3844      int pos;
3845      struct re_registers *regs;
3846      int stop;
3847 {
3848   int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3849                                     pos, regs, stop);
3850 #ifndef REGEX_MALLOC
3851 # ifdef C_ALLOCA
3852   alloca (0);
3853 # endif
3854 #endif
3855   return result;
3856 }
3857 #ifdef _LIBC
3858 weak_alias (__re_match_2, re_match_2)
3859 #endif
3860 
3861 /* This is a separate function so that we can force an alloca cleanup
3862    afterwards.  */
3863 static int
3864 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3865      struct re_pattern_buffer *bufp;
3866      const char *string1, *string2;
3867      int size1, size2;
3868      int pos;
3869      struct re_registers *regs;
3870      int stop;
3871 {
3872   /* General temporaries.  */
3873   int mcnt;
3874   unsigned char *p1;
3875 
3876   /* Just past the end of the corresponding string.  */
3877   const char *end1, *end2;
3878 
3879   /* Pointers into string1 and string2, just past the last characters in
3880      each to consider matching.  */
3881   const char *end_match_1, *end_match_2;
3882 
3883   /* Where we are in the data, and the end of the current string.  */
3884   const char *d, *dend;
3885 
3886   /* Where we are in the pattern, and the end of the pattern.  */
3887   unsigned char *p = bufp->buffer;
3888   register unsigned char *pend = p + bufp->used;
3889 
3890   /* Mark the opcode just after a start_memory, so we can test for an
3891      empty subpattern when we get to the stop_memory.  */
3892   unsigned char *just_past_start_mem = 0;
3893 
3894   /* We use this to map every character in the string.  */
3895   RE_TRANSLATE_TYPE translate = bufp->translate;
3896 
3897   /* Failure point stack.  Each place that can handle a failure further
3898      down the line pushes a failure point on this stack.  It consists of
3899      restart, regend, and reg_info for all registers corresponding to
3900      the subexpressions we're currently inside, plus the number of such
3901      registers, and, finally, two char *'s.  The first char * is where
3902      to resume scanning the pattern; the second one is where to resume
3903      scanning the strings.  If the latter is zero, the failure point is
3904      a ``dummy''; if a failure happens and the failure point is a dummy,
3905      it gets discarded and the next next one is tried.  */
3906 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3907   fail_stack_type fail_stack;
3908 #endif
3909 #ifdef DEBUG
3910   static unsigned failure_id;
3911   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3912 #endif
3913 
3914 #ifdef REL_ALLOC
3915   /* This holds the pointer to the failure stack, when
3916      it is allocated relocatably.  */
3917   fail_stack_elt_t *failure_stack_ptr;
3918 #endif
3919 
3920   /* We fill all the registers internally, independent of what we
3921      return, for use in backreferences.  The number here includes
3922      an element for register zero.  */
3923   size_t num_regs = bufp->re_nsub + 1;
3924 
3925   /* The currently active registers.  */
3926   active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3927   active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3928 
3929   /* Information on the contents of registers. These are pointers into
3930      the input strings; they record just what was matched (on this
3931      attempt) by a subexpression part of the pattern, that is, the
3932      regnum-th regstart pointer points to where in the pattern we began
3933      matching and the regnum-th regend points to right after where we
3934      stopped matching the regnum-th subexpression.  (The zeroth register
3935      keeps track of what the whole pattern matches.)  */
3936 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3937   const char **regstart, **regend;
3938 #endif
3939 
3940   /* If a group that's operated upon by a repetition operator fails to
3941      match anything, then the register for its start will need to be
3942      restored because it will have been set to wherever in the string we
3943      are when we last see its open-group operator.  Similarly for a
3944      register's end.  */
3945 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3946   const char **old_regstart, **old_regend;
3947 #endif
3948 
3949   /* The is_active field of reg_info helps us keep track of which (possibly
3950      nested) subexpressions we are currently in. The matched_something
3951      field of reg_info[reg_num] helps us tell whether or not we have
3952      matched any of the pattern so far this time through the reg_num-th
3953      subexpression.  These two fields get reset each time through any
3954      loop their register is in.  */
3955 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3956   register_info_type *reg_info;
3957 #endif
3958 
3959   /* The following record the register info as found in the above
3960      variables when we find a match better than any we've seen before.
3961      This happens as we backtrack through the failure points, which in
3962      turn happens only if we have not yet matched the entire string. */
3963   unsigned best_regs_set = false;
3964 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3965   const char **best_regstart, **best_regend;
3966 #endif
3967 
3968   /* Logically, this is `best_regend[0]'.  But we don't want to have to
3969      allocate space for that if we're not allocating space for anything
3970      else (see below).  Also, we never need info about register 0 for
3971      any of the other register vectors, and it seems rather a kludge to
3972      treat `best_regend' differently than the rest.  So we keep track of
3973      the end of the best match so far in a separate variable.  We
3974      initialize this to NULL so that when we backtrack the first time
3975      and need to test it, it's not garbage.  */
3976   const char *match_end = NULL;
3977 
3978   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
3979   int set_regs_matched_done = 0;
3980 
3981   /* Used when we pop values we don't care about.  */
3982 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3983   const char **reg_dummy;
3984   register_info_type *reg_info_dummy;
3985 #endif
3986 
3987 #ifdef DEBUG
3988   /* Counts the total number of registers pushed.  */
3989   unsigned num_regs_pushed = 0;
3990 #endif
3991 
3992   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3993 
3994   INIT_FAIL_STACK ();
3995 
3996 #ifdef MATCH_MAY_ALLOCATE
3997   /* Do not bother to initialize all the register variables if there are
3998      no groups in the pattern, as it takes a fair amount of time.  If
3999      there are groups, we include space for register 0 (the whole
4000      pattern), even though we never use it, since it simplifies the
4001      array indexing.  We should fix this.  */
4002   if (bufp->re_nsub)
4003     {
4004       regstart = REGEX_TALLOC (num_regs, const char *);
4005       regend = REGEX_TALLOC (num_regs, const char *);
4006       old_regstart = REGEX_TALLOC (num_regs, const char *);
4007       old_regend = REGEX_TALLOC (num_regs, const char *);
4008       best_regstart = REGEX_TALLOC (num_regs, const char *);
4009       best_regend = REGEX_TALLOC (num_regs, const char *);
4010       reg_info = REGEX_TALLOC (num_regs, register_info_type);
4011       reg_dummy = REGEX_TALLOC (num_regs, const char *);
4012       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4013 
4014       if (!(regstart && regend && old_regstart && old_regend && reg_info
4015             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4016         {
4017           FREE_VARIABLES ();
4018           return -2;
4019         }
4020     }
4021   else
4022     {
4023       /* We must initialize all our variables to NULL, so that
4024          `FREE_VARIABLES' doesn't try to free them.  */
4025       regstart = regend = old_regstart = old_regend = best_regstart
4026         = best_regend = reg_dummy = NULL;
4027       reg_info = reg_info_dummy = (register_info_type *) NULL;
4028     }
4029 #endif /* MATCH_MAY_ALLOCATE */
4030 
4031   /* The starting position is bogus.  */
4032   if (pos < 0 || pos > size1 + size2)
4033     {
4034       FREE_VARIABLES ();
4035       return -1;
4036     }
4037 
4038   /* Initialize subexpression text positions to -1 to mark ones that no
4039      start_memory/stop_memory has been seen for. Also initialize the
4040      register information struct.  */
4041   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4042     {
4043       regstart[mcnt] = regend[mcnt]
4044         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4045 
4046       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4047       IS_ACTIVE (reg_info[mcnt]) = 0;
4048       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4049       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4050     }
4051 
4052   /* We move `string1' into `string2' if the latter's empty -- but not if
4053      `string1' is null.  */
4054   if (size2 == 0 && string1 != NULL)
4055     {
4056       string2 = string1;
4057       size2 = size1;
4058       string1 = 0;
4059       size1 = 0;
4060     }
4061   end1 = string1 + size1;
4062   end2 = string2 + size2;
4063 
4064   /* Compute where to stop matching, within the two strings.  */
4065   if (stop <= size1)
4066     {
4067       end_match_1 = string1 + stop;
4068       end_match_2 = string2;
4069     }
4070   else
4071     {
4072       end_match_1 = end1;
4073       end_match_2 = string2 + stop - size1;
4074     }
4075 
4076   /* `p' scans through the pattern as `d' scans through the data.
4077      `dend' is the end of the input string that `d' points within.  `d'
4078      is advanced into the following input string whenever necessary, but
4079      this happens before fetching; therefore, at the beginning of the
4080      loop, `d' can be pointing at the end of a string, but it cannot
4081      equal `string2'.  */
4082   if (size1 > 0 && pos <= size1)
4083     {
4084       d = string1 + pos;
4085       dend = end_match_1;
4086     }
4087   else
4088     {
4089       d = string2 + pos - size1;
4090       dend = end_match_2;
4091     }
4092 
4093   DEBUG_PRINT1 ("The compiled pattern is:\n");
4094   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4095   DEBUG_PRINT1 ("The string to match is: `");
4096   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4097   DEBUG_PRINT1 ("'\n");
4098 
4099   /* This loops over pattern commands.  It exits by returning from the
4100      function if the match is complete, or it drops through if the match
4101      fails at this starting point in the input data.  */
4102   for (;;)
4103     {
4104 #ifdef _LIBC
4105       DEBUG_PRINT2 ("\n%p: ", p);
4106 #else
4107       DEBUG_PRINT2 ("\n0x%x: ", p);
4108 #endif
4109 
4110       if (p == pend)
4111         { /* End of pattern means we might have succeeded.  */
4112           DEBUG_PRINT1 ("end of pattern ... ");
4113 
4114           /* If we haven't matched the entire string, and we want the
4115              longest match, try backtracking.  */
4116           if (d != end_match_2)
4117             {
4118               /* 1 if this match ends in the same string (string1 or string2)
4119                  as the best previous match.  */
4120               boolean same_str_p = (FIRST_STRING_P (match_end)
4121                                     == MATCHING_IN_FIRST_STRING);
4122               /* 1 if this match is the best seen so far.  */
4123               boolean best_match_p;
4124 
4125               /* AIX compiler got confused when this was combined
4126                  with the previous declaration.  */
4127               if (same_str_p)
4128                 best_match_p = d > match_end;
4129               else
4130                 best_match_p = !MATCHING_IN_FIRST_STRING;
4131 
4132               DEBUG_PRINT1 ("backtracking.\n");
4133 
4134               if (!FAIL_STACK_EMPTY ())
4135                 { /* More failure points to try.  */
4136 
4137                   /* If exceeds best match so far, save it.  */
4138                   if (!best_regs_set || best_match_p)
4139                     {
4140                       best_regs_set = true;
4141                       match_end = d;
4142 
4143                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4144 
4145                       for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4146                         {
4147                           best_regstart[mcnt] = regstart[mcnt];
4148                           best_regend[mcnt] = regend[mcnt];
4149                         }
4150                     }
4151                   goto fail;
4152                 }
4153 
4154               /* If no failure points, don't restore garbage.  And if
4155                  last match is real best match, don't restore second
4156                  best one. */
4157               else if (best_regs_set && !best_match_p)
4158                 {
4159                 restore_best_regs:
4160                   /* Restore best match.  It may happen that `dend ==
4161                      end_match_1' while the restored d is in string2.
4162                      For example, the pattern `x.*y.*z' against the
4163                      strings `x-' and `y-z-', if the two strings are
4164                      not consecutive in memory.  */
4165                   DEBUG_PRINT1 ("Restoring best registers.\n");
4166 
4167                   d = match_end;
4168                   dend = ((d >= string1 && d <= end1)
4169                            ? end_match_1 : end_match_2);
4170 
4171                   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4172                     {
4173                       regstart[mcnt] = best_regstart[mcnt];
4174                       regend[mcnt] = best_regend[mcnt];
4175                     }
4176                 }
4177             } /* d != end_match_2 */
4178 
4179         succeed_label:
4180           DEBUG_PRINT1 ("Accepting match.\n");
4181 
4182           /* If caller wants register contents data back, do it.  */
4183           if (regs && !bufp->no_sub)
4184             {
4185               /* Have the register data arrays been allocated?  */
4186               if (bufp->regs_allocated == REGS_UNALLOCATED)
4187                 { /* No.  So allocate them with malloc.  We need one
4188                      extra element beyond `num_regs' for the `-1' marker
4189                      GNU code uses.  */
4190                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4191                   regs->start = TALLOC (regs->num_regs, regoff_t);
4192                   regs->end = TALLOC (regs->num_regs, regoff_t);
4193                   if (regs->start == NULL || regs->end == NULL)
4194                     {
4195                       FREE_VARIABLES ();
4196                       return -2;
4197                     }
4198                   bufp->regs_allocated = REGS_REALLOCATE;
4199                 }
4200               else if (bufp->regs_allocated == REGS_REALLOCATE)
4201                 { /* Yes.  If we need more elements than were already
4202                      allocated, reallocate them.  If we need fewer, just
4203                      leave it alone.  */
4204                   if (regs->num_regs < num_regs + 1)
4205                     {
4206                       regs->num_regs = num_regs + 1;
4207                       RETALLOC (regs->start, regs->num_regs, regoff_t);
4208                       RETALLOC (regs->end, regs->num_regs, regoff_t);
4209                       if (regs->start == NULL || regs->end == NULL)
4210                         {
4211                           FREE_VARIABLES ();
4212                           return -2;
4213                         }
4214                     }
4215                 }
4216               else
4217                 {
4218                   /* These braces fend off a "empty body in an else-statement"
4219                      warning under GCC when assert expands to nothing.  */
4220                   assert (bufp->regs_allocated == REGS_FIXED);
4221                 }
4222 
4223               /* Convert the pointer data in `regstart' and `regend' to
4224                  indices.  Register zero has to be set differently,
4225                  since we haven't kept track of any info for it.  */
4226               if (regs->num_regs > 0)
4227                 {
4228                   regs->start[0] = pos;
4229                   regs->end[0] = (MATCHING_IN_FIRST_STRING
4230                                   ? ((regoff_t) (d - string1))
4231                                   : ((regoff_t) (d - string2 + size1)));
4232                 }
4233 
4234               /* Go through the first `min (num_regs, regs->num_regs)'
4235                  registers, since that is all we initialized.  */
4236               for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4237                    mcnt++)
4238                 {
4239                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4240                     regs->start[mcnt] = regs->end[mcnt] = -1;
4241                   else
4242                     {
4243                       regs->start[mcnt]
4244                         = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4245                       regs->end[mcnt]
4246                         = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4247                     }
4248                 }
4249 
4250               /* If the regs structure we return has more elements than
4251                  were in the pattern, set the extra elements to -1.  If
4252                  we (re)allocated the registers, this is the case,
4253                  because we always allocate enough to have at least one
4254                  -1 at the end.  */
4255               for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4256                 regs->start[mcnt] = regs->end[mcnt] = -1;
4257             } /* regs && !bufp->no_sub */
4258 
4259           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4260                         nfailure_points_pushed, nfailure_points_popped,
4261                         nfailure_points_pushed - nfailure_points_popped);
4262           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4263 
4264           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4265                             ? string1
4266                             : string2 - size1);
4267 
4268           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4269 
4270           FREE_VARIABLES ();
4271           return mcnt;
4272         }
4273 
4274       /* Otherwise match next pattern command.  */
4275       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4276         {
4277         /* Ignore these.  Used to ignore the n of succeed_n's which
4278            currently have n == 0.  */
4279         case no_op:
4280           DEBUG_PRINT1 ("EXECUTING no_op.\n");
4281           break;
4282 
4283         case succeed:
4284           DEBUG_PRINT1 ("EXECUTING succeed.\n");
4285           goto succeed_label;
4286 
4287         /* Match the next n pattern characters exactly.  The following
4288            byte in the pattern defines n, and the n bytes after that
4289            are the characters to match.  */
4290         case exactn:
4291           mcnt = *p++;
4292           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4293 
4294           /* This is written out as an if-else so we don't waste time
4295              testing `translate' inside the loop.  */
4296           if (translate)
4297             {
4298               do
4299                 {
4300                   PREFETCH ();
4301                   if ((unsigned char) translate[(unsigned char) *d++]
4302                       != (unsigned char) *p++)
4303                     goto fail;
4304                 }
4305               while (--mcnt);
4306             }
4307           else
4308             {
4309               do
4310                 {
4311                   PREFETCH ();
4312                   if (*d++ != (char) *p++) goto fail;
4313                 }
4314               while (--mcnt);
4315             }
4316           SET_REGS_MATCHED ();
4317           break;
4318 
4319 
4320         /* Match any character except possibly a newline or a null.  */
4321         case anychar:
4322           DEBUG_PRINT1 ("EXECUTING anychar.\n");
4323 
4324           PREFETCH ();
4325 
4326           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4327               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4328             goto fail;
4329 
4330           SET_REGS_MATCHED ();
4331           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
4332           d++;
4333           break;
4334 
4335 
4336         case charset:
4337         case charset_not:
4338           {
4339             register unsigned char c;
4340             boolean not = (re_opcode_t) *(p - 1) == charset_not;
4341 
4342             DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4343 
4344             PREFETCH ();
4345             c = TRANSLATE (*d); /* The character to match.  */
4346 
4347             /* Cast to `unsigned' instead of `unsigned char' in case the
4348                bit list is a full 32 bytes long.  */
4349             if (c < (unsigned) (*p * BYTEWIDTH)
4350                 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4351               not = !not;
4352 
4353             p += 1 + *p;
4354 
4355             if (!not) goto fail;
4356 
4357             SET_REGS_MATCHED ();
4358             d++;
4359             break;
4360           }
4361 
4362 
4363         /* The beginning of a group is represented by start_memory.
4364            The arguments are the register number in the next byte, and the
4365            number of groups inner to this one in the next.  The text
4366            matched within the group is recorded (in the internal
4367            registers data structure) under the register number.  */
4368         case start_memory:
4369           DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4370 
4371           /* Find out if this group can match the empty string.  */
4372           p1 = p;               /* To send to group_match_null_string_p.  */
4373 
4374           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4375             REG_MATCH_NULL_STRING_P (reg_info[*p])
4376               = group_match_null_string_p (&p1, pend, reg_info);
4377 
4378           /* Save the position in the string where we were the last time
4379              we were at this open-group operator in case the group is
4380              operated upon by a repetition operator, e.g., with `(a*)*b'
4381              against `ab'; then we want to ignore where we are now in
4382              the string in case this attempt to match fails.  */
4383           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4384                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4385                              : regstart[*p];
4386           DEBUG_PRINT2 ("  old_regstart: %d\n",
4387                          POINTER_TO_OFFSET (old_regstart[*p]));
4388 
4389           regstart[*p] = d;
4390           DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4391 
4392           IS_ACTIVE (reg_info[*p]) = 1;
4393           MATCHED_SOMETHING (reg_info[*p]) = 0;
4394 
4395           /* Clear this whenever we change the register activity status.  */
4396           set_regs_matched_done = 0;
4397 
4398           /* This is the new highest active register.  */
4399           highest_active_reg = *p;
4400 
4401           /* If nothing was active before, this is the new lowest active
4402              register.  */
4403           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4404             lowest_active_reg = *p;
4405 
4406           /* Move past the register number and inner group count.  */
4407           p += 2;
4408           just_past_start_mem = p;
4409 
4410           break;
4411 
4412 
4413         /* The stop_memory opcode represents the end of a group.  Its
4414            arguments are the same as start_memory's: the register
4415            number, and the number of inner groups.  */
4416         case stop_memory:
4417           DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4418 
4419           /* We need to save the string position the last time we were at
4420              this close-group operator in case the group is operated
4421              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4422              against `aba'; then we want to ignore where we are now in
4423              the string in case this attempt to match fails.  */
4424           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4425                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
4426                            : regend[*p];
4427           DEBUG_PRINT2 ("      old_regend: %d\n",
4428                          POINTER_TO_OFFSET (old_regend[*p]));
4429 
4430           regend[*p] = d;
4431           DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4432 
4433           /* This register isn't active anymore.  */
4434           IS_ACTIVE (reg_info[*p]) = 0;
4435 
4436           /* Clear this whenever we change the register activity status.  */
4437           set_regs_matched_done = 0;
4438 
4439           /* If this was the only register active, nothing is active
4440              anymore.  */
4441           if (lowest_active_reg == highest_active_reg)
4442             {
4443               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4444               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4445             }
4446           else
4447             { /* We must scan for the new highest active register, since
4448                  it isn't necessarily one less than now: consider
4449                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
4450                  new highest active register is 1.  */
4451               unsigned char r = *p - 1;
4452               while (r > 0 && !IS_ACTIVE (reg_info[r]))
4453                 r--;
4454 
4455               /* If we end up at register zero, that means that we saved
4456                  the registers as the result of an `on_failure_jump', not
4457                  a `start_memory', and we jumped to past the innermost
4458                  `stop_memory'.  For example, in ((.)*) we save
4459                  registers 1 and 2 as a result of the *, but when we pop
4460                  back to the second ), we are at the stop_memory 1.
4461                  Thus, nothing is active.  */
4462               if (r == 0)
4463                 {
4464                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4465                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4466                 }
4467               else
4468                 highest_active_reg = r;
4469             }
4470 
4471           /* If just failed to match something this time around with a
4472              group that's operated on by a repetition operator, try to
4473              force exit from the ``loop'', and restore the register
4474              information for this group that we had before trying this
4475              last match.  */
4476           if ((!MATCHED_SOMETHING (reg_info[*p])
4477                || just_past_start_mem == p - 1)
4478               && (p + 2) < pend)
4479             {
4480               boolean is_a_jump_n = false;
4481 
4482               p1 = p + 2;
4483               mcnt = 0;
4484               switch ((re_opcode_t) *p1++)
4485                 {
4486                   case jump_n:
4487                     is_a_jump_n = true;
4488                   case pop_failure_jump:
4489                   case maybe_pop_jump:
4490                   case jump:
4491                   case dummy_failure_jump:
4492                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4493                     if (is_a_jump_n)
4494                       p1 += 2;
4495                     break;
4496 
4497                   default:
4498                     /* do nothing */ ;
4499                 }
4500               p1 += mcnt;
4501 
4502               /* If the next operation is a jump backwards in the pattern
4503                  to an on_failure_jump right before the start_memory
4504                  corresponding to this stop_memory, exit from the loop
4505                  by forcing a failure after pushing on the stack the
4506                  on_failure_jump's jump in the pattern, and d.  */
4507               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4508                   && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4509                 {
4510                   /* If this group ever matched anything, then restore
4511                      what its registers were before trying this last
4512                      failed match, e.g., with `(a*)*b' against `ab' for
4513                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
4514                      against `aba' for regend[3].
4515 
4516                      Also restore the registers for inner groups for,
4517                      e.g., `((a*)(b*))*' against `aba' (register 3 would
4518                      otherwise get trashed).  */
4519 
4520                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4521                     {
4522                       unsigned r;
4523 
4524                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4525 
4526                       /* Restore this and inner groups' (if any) registers.  */
4527                       for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4528                            r++)
4529                         {
4530                           regstart[r] = old_regstart[r];
4531 
4532                           /* xx why this test?  */
4533                           if (old_regend[r] >= regstart[r])
4534                             regend[r] = old_regend[r];
4535                         }
4536                     }
4537                   p1++;
4538                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4539                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4540 
4541                   goto fail;
4542                 }
4543             }
4544 
4545           /* Move past the register number and the inner group count.  */
4546           p += 2;
4547           break;
4548 
4549 
4550         /* \<digit> has been turned into a `duplicate' command which is
4551            followed by the numeric value of <digit> as the register number.  */
4552         case duplicate:
4553           {
4554             register const char *d2, *dend2;
4555             int regno = *p++;   /* Get which register to match against.  */
4556             DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4557 
4558             /* Can't back reference a group which we've never matched.  */
4559             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4560               goto fail;
4561 
4562             /* Where in input to try to start matching.  */
4563             d2 = regstart[regno];
4564 
4565             /* Where to stop matching; if both the place to start and
4566                the place to stop matching are in the same string, then
4567                set to the place to stop, otherwise, for now have to use
4568                the end of the first string.  */
4569 
4570             dend2 = ((FIRST_STRING_P (regstart[regno])
4571                       == FIRST_STRING_P (regend[regno]))
4572                      ? regend[regno] : end_match_1);
4573             for (;;)
4574               {
4575                 /* If necessary, advance to next segment in register
4576                    contents.  */
4577                 while (d2 == dend2)
4578                   {
4579                     if (dend2 == end_match_2) break;
4580                     if (dend2 == regend[regno]) break;
4581 
4582                     /* End of string1 => advance to string2. */
4583                     d2 = string2;
4584                     dend2 = regend[regno];
4585                   }
4586                 /* At end of register contents => success */
4587                 if (d2 == dend2) break;
4588 
4589                 /* If necessary, advance to next segment in data.  */
4590                 PREFETCH ();
4591 
4592                 /* How many characters left in this segment to match.  */
4593                 mcnt = dend - d;
4594 
4595                 /* Want how many consecutive characters we can match in
4596                    one shot, so, if necessary, adjust the count.  */
4597                 if (mcnt > dend2 - d2)
4598                   mcnt = dend2 - d2;
4599 
4600                 /* Compare that many; failure if mismatch, else move
4601                    past them.  */
4602                 if (translate
4603                     ? bcmp_translate (d, d2, mcnt, translate)
4604                     : memcmp (d, d2, mcnt))
4605                   goto fail;
4606                 d += mcnt, d2 += mcnt;
4607 
4608                 /* Do this because we've match some characters.  */
4609                 SET_REGS_MATCHED ();
4610               }
4611           }
4612           break;
4613 
4614 
4615         /* begline matches the empty string at the beginning of the string
4616            (unless `not_bol' is set in `bufp'), and, if
4617            `newline_anchor' is set, after newlines.  */
4618         case begline:
4619           DEBUG_PRINT1 ("EXECUTING begline.\n");
4620 
4621           if (AT_STRINGS_BEG (d))
4622             {
4623               if (!bufp->not_bol) break;
4624             }
4625           else if (d[-1] == '\n' && bufp->newline_anchor)
4626             {
4627               break;
4628             }
4629           /* In all other cases, we fail.  */
4630           goto fail;
4631 
4632 
4633         /* endline is the dual of begline.  */
4634         case endline:
4635           DEBUG_PRINT1 ("EXECUTING endline.\n");
4636 
4637           if (AT_STRINGS_END (d))
4638             {
4639               if (!bufp->not_eol) break;
4640             }
4641 
4642           /* We have to ``prefetch'' the next character.  */
4643           else if ((d == end1 ? *string2 : *d) == '\n'
4644                    && bufp->newline_anchor)
4645             {
4646               break;
4647             }
4648           goto fail;
4649 
4650 
4651         /* Match at the very beginning of the data.  */
4652         case begbuf:
4653           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4654           if (AT_STRINGS_BEG (d))
4655             break;
4656           goto fail;
4657 
4658 
4659         /* Match at the very end of the data.  */
4660         case endbuf:
4661           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4662           if (AT_STRINGS_END (d))
4663             break;
4664           goto fail;
4665 
4666 
4667         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
4668            pushes NULL as the value for the string on the stack.  Then
4669            `pop_failure_point' will keep the current value for the
4670            string, instead of restoring it.  To see why, consider
4671            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
4672            then the . fails against the \n.  But the next thing we want
4673            to do is match the \n against the \n; if we restored the
4674            string value, we would be back at the foo.
4675 
4676            Because this is used only in specific cases, we don't need to
4677            check all the things that `on_failure_jump' does, to make
4678            sure the right things get saved on the stack.  Hence we don't
4679            share its code.  The only reason to push anything on the
4680            stack at all is that otherwise we would have to change
4681            `anychar's code to do something besides goto fail in this
4682            case; that seems worse than this.  */
4683         case on_failure_keep_string_jump:
4684           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4685 
4686           EXTRACT_NUMBER_AND_INCR (mcnt, p);
4687 #ifdef _LIBC
4688           DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4689 #else
4690           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4691 #endif
4692 
4693           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4694           break;
4695 
4696 
4697         /* Uses of on_failure_jump:
4698 
4699            Each alternative starts with an on_failure_jump that points
4700            to the beginning of the next alternative.  Each alternative
4701            except the last ends with a jump that in effect jumps past
4702            the rest of the alternatives.  (They really jump to the
4703            ending jump of the following alternative, because tensioning
4704            these jumps is a hassle.)
4705 
4706            Repeats start with an on_failure_jump that points past both
4707            the repetition text and either the following jump or
4708            pop_failure_jump back to this on_failure_jump.  */
4709         case on_failure_jump:
4710         on_failure:
4711           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4712 
4713           EXTRACT_NUMBER_AND_INCR (mcnt, p);
4714 #ifdef _LIBC
4715           DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4716 #else
4717           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4718 #endif
4719 
4720           /* If this on_failure_jump comes right before a group (i.e.,
4721              the original * applied to a group), save the information
4722              for that group and all inner ones, so that if we fail back
4723              to this point, the group's information will be correct.
4724              For example, in \(a*\)*\1, we need the preceding group,
4725              and in \(zz\(a*\)b*\)\2, we need the inner group.  */
4726 
4727           /* We can't use `p' to check ahead because we push
4728              a failure point to `p + mcnt' after we do this.  */
4729           p1 = p;
4730 
4731           /* We need to skip no_op's before we look for the
4732              start_memory in case this on_failure_jump is happening as
4733              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4734              against aba.  */
4735           while (p1 < pend && (re_opcode_t) *p1 == no_op)
4736             p1++;
4737 
4738           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4739             {
4740               /* We have a new highest active register now.  This will
4741                  get reset at the start_memory we are about to get to,
4742                  but we will have saved all the registers relevant to
4743                  this repetition op, as described above.  */
4744               highest_active_reg = *(p1 + 1) + *(p1 + 2);
4745               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4746                 lowest_active_reg = *(p1 + 1);
4747             }
4748 
4749           DEBUG_PRINT1 (":\n");
4750           PUSH_FAILURE_POINT (p + mcnt, d, -2);
4751           break;
4752 
4753 
4754         /* A smart repeat ends with `maybe_pop_jump'.
4755            We change it to either `pop_failure_jump' or `jump'.  */
4756         case maybe_pop_jump:
4757           EXTRACT_NUMBER_AND_INCR (mcnt, p);
4758           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4759           {
4760             register unsigned char *p2 = p;
4761 
4762             /* Compare the beginning of the repeat with what in the
4763                pattern follows its end. If we can establish that there
4764                is nothing that they would both match, i.e., that we
4765                would have to backtrack because of (as in, e.g., `a*a')
4766                then we can change to pop_failure_jump, because we'll
4767                never have to backtrack.
4768 
4769                This is not true in the case of alternatives: in
4770                `(a|ab)*' we do need to backtrack to the `ab' alternative
4771                (e.g., if the string was `ab').  But instead of trying to
4772                detect that here, the alternative has put on a dummy
4773                failure point which is what we will end up popping.  */
4774 
4775             /* Skip over open/close-group commands.
4776                If what follows this loop is a ...+ construct,
4777                look at what begins its body, since we will have to
4778                match at least one of that.  */
4779             while (1)
4780               {
4781                 if (p2 + 2 < pend
4782                     && ((re_opcode_t) *p2 == stop_memory
4783                         || (re_opcode_t) *p2 == start_memory))
4784                   p2 += 3;
4785                 else if (p2 + 6 < pend
4786                          && (re_opcode_t) *p2 == dummy_failure_jump)
4787                   p2 += 6;
4788                 else
4789                   break;
4790               }
4791 
4792             p1 = p + mcnt;
4793             /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4794                to the `maybe_finalize_jump' of this case.  Examine what
4795                follows.  */
4796 
4797             /* If we're at the end of the pattern, we can change.  */
4798             if (p2 == pend)
4799               {
4800                 /* Consider what happens when matching ":\(.*\)"
4801                    against ":/".  I don't really understand this code
4802                    yet.  */
4803                 p[-3] = (unsigned char) pop_failure_jump;
4804                 DEBUG_PRINT1
4805                   ("  End of pattern: change to `pop_failure_jump'.\n");
4806               }
4807 
4808             else if ((re_opcode_t) *p2 == exactn
4809                      || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4810               {
4811                 register unsigned char c
4812                   = *p2 == (unsigned char) endline ? '\n' : p2[2];
4813 
4814                 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4815                   {
4816                     p[-3] = (unsigned char) pop_failure_jump;
4817                     DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4818                                   c, p1[5]);
4819                   }
4820 
4821                 else if ((re_opcode_t) p1[3] == charset
4822                          || (re_opcode_t) p1[3] == charset_not)
4823                   {
4824                     int not = (re_opcode_t) p1[3] == charset_not;
4825 
4826                     if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4827                         && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4828                       not = !not;
4829 
4830                     /* `not' is equal to 1 if c would match, which means
4831                         that we can't change to pop_failure_jump.  */
4832                     if (!not)
4833                       {
4834                         p[-3] = (unsigned char) pop_failure_jump;
4835                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4836                       }
4837                   }
4838               }
4839             else if ((re_opcode_t) *p2 == charset)
4840               {
4841                 /* We win if the first character of the loop is not part
4842                    of the charset.  */
4843                 if ((re_opcode_t) p1[3] == exactn
4844                     && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4845                           && (p2[2 + p1[5] / BYTEWIDTH]
4846                               & (1 << (p1[5] % BYTEWIDTH)))))
4847                   {
4848                     p[-3] = (unsigned char) pop_failure_jump;
4849                     DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4850                   }
4851 
4852                 else if ((re_opcode_t) p1[3] == charset_not)
4853                   {
4854                     int idx;
4855                     /* We win if the charset_not inside the loop
4856                        lists every character listed in the charset after.  */
4857                     for (idx = 0; idx < (int) p2[1]; idx++)
4858                       if (! (p2[2 + idx] == 0
4859                              || (idx < (int) p1[4]
4860                                  && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4861                         break;
4862 
4863                     if (idx == p2[1])
4864                       {
4865                         p[-3] = (unsigned char) pop_failure_jump;
4866                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4867                       }
4868                   }
4869                 else if ((re_opcode_t) p1[3] == charset)
4870                   {
4871                     int idx;
4872                     /* We win if the charset inside the loop
4873                        has no overlap with the one after the loop.  */
4874                     for (idx = 0;
4875                          idx < (int) p2[1] && idx < (int) p1[4];
4876                          idx++)
4877                       if ((p2[2 + idx] & p1[5 + idx]) != 0)
4878                         break;
4879 
4880                     if (idx == p2[1] || idx == p1[4])
4881                       {
4882                         p[-3] = (unsigned char) pop_failure_jump;
4883                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4884                       }
4885                   }
4886               }
4887           }
4888           p -= 2;               /* Point at relative address again.  */
4889           if ((re_opcode_t) p[-1] != pop_failure_jump)
4890             {
4891               p[-1] = (unsigned char) jump;
4892               DEBUG_PRINT1 ("  Match => jump.\n");
4893               goto unconditional_jump;
4894             }
4895         /* Note fall through.  */
4896 
4897 
4898         /* The end of a simple repeat has a pop_failure_jump back to
4899            its matching on_failure_jump, where the latter will push a
4900            failure point.  The pop_failure_jump takes off failure
4901            points put on by this pop_failure_jump's matching
4902            on_failure_jump; we got through the pattern to here from the
4903            matching on_failure_jump, so didn't fail.  */
4904         case pop_failure_jump:
4905           {
4906             /* We need to pass separate storage for the lowest and
4907                highest registers, even though we don't care about the
4908                actual values.  Otherwise, we will restore only one
4909                register from the stack, since lowest will == highest in
4910                `pop_failure_point'.  */
4911             active_reg_t dummy_low_reg, dummy_high_reg;
4912             unsigned char *pdummy;
4913             const char *sdummy;
4914 
4915             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4916             POP_FAILURE_POINT (sdummy, pdummy,
4917                                dummy_low_reg, dummy_high_reg,
4918                                reg_dummy, reg_dummy, reg_info_dummy);
4919           }
4920           /* Note fall through.  */
4921 
4922         unconditional_jump:
4923 #ifdef _LIBC
4924           DEBUG_PRINT2 ("\n%p: ", p);
4925 #else
4926           DEBUG_PRINT2 ("\n0x%x: ", p);
4927 #endif
4928           /* Note fall through.  */
4929 
4930         /* Unconditionally jump (without popping any failure points).  */
4931         case jump:
4932           EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
4933           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4934           p += mcnt;                            /* Do the jump.  */
4935 #ifdef _LIBC
4936           DEBUG_PRINT2 ("(to %p).\n", p);
4937 #else
4938           DEBUG_PRINT2 ("(to 0x%x).\n", p);
4939 #endif
4940           break;
4941 
4942 
4943         /* We need this opcode so we can detect where alternatives end
4944            in `group_match_null_string_p' et al.  */
4945         case jump_past_alt:
4946           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4947           goto unconditional_jump;
4948 
4949 
4950         /* Normally, the on_failure_jump pushes a failure point, which
4951            then gets popped at pop_failure_jump.  We will end up at
4952            pop_failure_jump, also, and with a pattern of, say, `a+', we
4953            are skipping over the on_failure_jump, so we have to push
4954            something meaningless for pop_failure_jump to pop.  */
4955         case dummy_failure_jump:
4956           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4957           /* It doesn't matter what we push for the string here.  What
4958              the code at `fail' tests is the value for the pattern.  */
4959           PUSH_FAILURE_POINT (NULL, NULL, -2);
4960           goto unconditional_jump;
4961 
4962 
4963         /* At the end of an alternative, we need to push a dummy failure
4964            point in case we are followed by a `pop_failure_jump', because
4965            we don't want the failure point for the alternative to be
4966            popped.  For example, matching `(a|ab)*' against `aab'
4967            requires that we match the `ab' alternative.  */
4968         case push_dummy_failure:
4969           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4970           /* See comments just above at `dummy_failure_jump' about the
4971              two zeroes.  */
4972           PUSH_FAILURE_POINT (NULL, NULL, -2);
4973           break;
4974 
4975         /* Have to succeed matching what follows at least n times.
4976            After that, handle like `on_failure_jump'.  */
4977         case succeed_n:
4978           EXTRACT_NUMBER (mcnt, p + 2);
4979           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4980 
4981           assert (mcnt >= 0);
4982           /* Originally, this is how many times we HAVE to succeed.  */
4983           if (mcnt > 0)
4984             {
4985                mcnt--;
4986                p += 2;
4987                STORE_NUMBER_AND_INCR (p, mcnt);
4988 #ifdef _LIBC
4989                DEBUG_PRINT3 ("  Setting %p to %d.\n", p - 2, mcnt);
4990 #else
4991                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - 2, mcnt);
4992 #endif
4993             }
4994           else if (mcnt == 0)
4995             {
4996 #ifdef _LIBC
4997               DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", p+2);
4998 #else
4999               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
5000 #endif
5001               p[2] = (unsigned char) no_op;
5002               p[3] = (unsigned char) no_op;
5003               goto on_failure;
5004             }
5005           break;
5006 
5007         case jump_n:
5008           EXTRACT_NUMBER (mcnt, p + 2);
5009           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5010 
5011           /* Originally, this is how many times we CAN jump.  */
5012           if (mcnt)
5013             {
5014                mcnt--;
5015                STORE_NUMBER (p + 2, mcnt);
5016 #ifdef _LIBC
5017                DEBUG_PRINT3 ("  Setting %p to %d.\n", p + 2, mcnt);
5018 #else
5019                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + 2, mcnt);
5020 #endif
5021                goto unconditional_jump;
5022             }
5023           /* If don't have to jump any more, skip over the rest of command.  */
5024           else
5025             p += 4;
5026           break;
5027 
5028         case set_number_at:
5029           {
5030             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5031 
5032             EXTRACT_NUMBER_AND_INCR (mcnt, p);
5033             p1 = p + mcnt;
5034             EXTRACT_NUMBER_AND_INCR (mcnt, p);
5035 #ifdef _LIBC
5036             DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
5037 #else
5038             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
5039 #endif
5040             STORE_NUMBER (p1, mcnt);
5041             break;
5042           }
5043 
5044 #if 0
5045         /* The DEC Alpha C compiler 3.x generates incorrect code for the
5046            test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
5047            AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
5048            macro and introducing temporary variables works around the bug.  */
5049 
5050         case wordbound:
5051           DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5052           if (AT_WORD_BOUNDARY (d))
5053             break;
5054           goto fail;
5055 
5056         case notwordbound:
5057           DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5058           if (AT_WORD_BOUNDARY (d))
5059             goto fail;
5060           break;
5061 #else
5062         case wordbound:
5063         {
5064           boolean prevchar, thischar;
5065 
5066           DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5067           if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5068             break;
5069 
5070           prevchar = WORDCHAR_P (d - 1);
5071           thischar = WORDCHAR_P (d);
5072           if (prevchar != thischar)
5073             break;
5074           goto fail;
5075         }
5076 
5077       case notwordbound:
5078         {
5079           boolean prevchar, thischar;
5080 
5081           DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5082           if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5083             goto fail;
5084 
5085           prevchar = WORDCHAR_P (d - 1);
5086           thischar = WORDCHAR_P (d);
5087           if (prevchar != thischar)
5088             goto fail;
5089           break;
5090         }
5091 #endif
5092 
5093         case wordbeg:
5094           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5095           if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5096             break;
5097           goto fail;
5098 
5099         case wordend:
5100           DEBUG_PRINT1 ("EXECUTING wordend.\n");
5101           if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5102               && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5103             break;
5104           goto fail;
5105 
5106 #ifdef emacs
5107         case before_dot:
5108           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5109           if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5110             goto fail;
5111           break;
5112 
5113         case at_dot:
5114           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5115           if (PTR_CHAR_POS ((unsigned char *) d) != point)
5116             goto fail;
5117           break;
5118 
5119         case after_dot:
5120           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5121           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5122             goto fail;
5123           break;
5124 
5125         case syntaxspec:
5126           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5127           mcnt = *p++;
5128           goto matchsyntax;
5129 
5130         case wordchar:
5131           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5132           mcnt = (int) Sword;
5133         matchsyntax:
5134           PREFETCH ();
5135           /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5136           d++;
5137           if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5138             goto fail;
5139           SET_REGS_MATCHED ();
5140           break;
5141 
5142         case notsyntaxspec:
5143           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5144           mcnt = *p++;
5145           goto matchnotsyntax;
5146 
5147         case notwordchar:
5148           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5149           mcnt = (int) Sword;
5150         matchnotsyntax:
5151           PREFETCH ();
5152           /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5153           d++;
5154           if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5155             goto fail;
5156           SET_REGS_MATCHED ();
5157           break;
5158 
5159 #else /* not emacs */
5160         case wordchar:
5161           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5162           PREFETCH ();
5163           if (!WORDCHAR_P (d))
5164             goto fail;
5165           SET_REGS_MATCHED ();
5166           d++;
5167           break;
5168 
5169         case notwordchar:
5170           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5171           PREFETCH ();
5172           if (WORDCHAR_P (d))
5173             goto fail;
5174           SET_REGS_MATCHED ();
5175           d++;
5176           break;
5177 #endif /* not emacs */
5178 
5179         default:
5180           abort ();
5181         }
5182       continue;  /* Successfully executed one pattern command; keep going.  */
5183 
5184 
5185     /* We goto here if a matching operation fails. */
5186     fail:
5187       if (!FAIL_STACK_EMPTY ())
5188         { /* A restart point is known.  Restore to that state.  */
5189           DEBUG_PRINT1 ("\nFAIL:\n");
5190           POP_FAILURE_POINT (d, p,
5191                              lowest_active_reg, highest_active_reg,
5192                              regstart, regend, reg_info);
5193 
5194           /* If this failure point is a dummy, try the next one.  */
5195           if (!p)
5196             goto fail;
5197 
5198           /* If we failed to the end of the pattern, don't examine *p.  */
5199           assert (p <= pend);
5200           if (p < pend)
5201             {
5202               boolean is_a_jump_n = false;
5203 
5204               /* If failed to a backwards jump that's part of a repetition
5205                  loop, need to pop this failure point and use the next one.  */
5206               switch ((re_opcode_t) *p)
5207                 {
5208                 case jump_n:
5209                   is_a_jump_n = true;
5210                 case maybe_pop_jump:
5211                 case pop_failure_jump:
5212                 case jump:
5213                   p1 = p + 1;
5214                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5215                   p1 += mcnt;
5216 
5217                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5218                       || (!is_a_jump_n
5219                           && (re_opcode_t) *p1 == on_failure_jump))
5220                     goto fail;
5221                   break;
5222                 default:
5223                   /* do nothing */ ;
5224                 }
5225             }
5226 
5227           if (d >= string1 && d <= end1)
5228             dend = end_match_1;
5229         }
5230       else
5231         break;   /* Matching at this starting point really fails.  */
5232     } /* for (;;) */
5233 
5234   if (best_regs_set)
5235     goto restore_best_regs;
5236 
5237   FREE_VARIABLES ();
5238 
5239   return -1;                            /* Failure to match.  */
5240 } /* re_match_2 */
5241 
5242 /* Subroutine definitions for re_match_2.  */
5243 
5244 
5245 /* We are passed P pointing to a register number after a start_memory.
5246 
5247    Return true if the pattern up to the corresponding stop_memory can
5248    match the empty string, and false otherwise.
5249 
5250    If we find the matching stop_memory, sets P to point to one past its number.
5251    Otherwise, sets P to an undefined byte less than or equal to END.
5252 
5253    We don't handle duplicates properly (yet).  */
5254 
5255 static boolean
5256 group_match_null_string_p (p, end, reg_info)
5257     unsigned char **p, *end;
5258     register_info_type *reg_info;
5259 {
5260   int mcnt;
5261   /* Point to after the args to the start_memory.  */
5262   unsigned char *p1 = *p + 2;
5263 
5264   while (p1 < end)
5265     {
5266       /* Skip over opcodes that can match nothing, and return true or
5267          false, as appropriate, when we get to one that can't, or to the
5268          matching stop_memory.  */
5269 
5270       switch ((re_opcode_t) *p1)
5271         {
5272         /* Could be either a loop or a series of alternatives.  */
5273         case on_failure_jump:
5274           p1++;
5275           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5276 
5277           /* If the next operation is not a jump backwards in the
5278              pattern.  */
5279 
5280           if (mcnt >= 0)
5281             {
5282               /* Go through the on_failure_jumps of the alternatives,
5283                  seeing if any of the alternatives cannot match nothing.
5284                  The last alternative starts with only a jump,
5285                  whereas the rest start with on_failure_jump and end
5286                  with a jump, e.g., here is the pattern for `a|b|c':
5287 
5288                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5289                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5290                  /exactn/1/c
5291 
5292                  So, we have to first go through the first (n-1)
5293                  alternatives and then deal with the last one separately.  */
5294 
5295 
5296               /* Deal with the first (n-1) alternatives, which start
5297                  with an on_failure_jump (see above) that jumps to right
5298                  past a jump_past_alt.  */
5299 
5300               while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5301                 {
5302                   /* `mcnt' holds how many bytes long the alternative
5303                      is, including the ending `jump_past_alt' and
5304                      its number.  */
5305 
5306                   if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5307                                                       reg_info))
5308                     return false;
5309 
5310                   /* Move to right after this alternative, including the
5311                      jump_past_alt.  */
5312                   p1 += mcnt;
5313 
5314                   /* Break if it's the beginning of an n-th alternative
5315                      that doesn't begin with an on_failure_jump.  */
5316                   if ((re_opcode_t) *p1 != on_failure_jump)
5317                     break;
5318 
5319                   /* Still have to check that it's not an n-th
5320                      alternative that starts with an on_failure_jump.  */
5321                   p1++;
5322                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5323                   if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5324                     {
5325                       /* Get to the beginning of the n-th alternative.  */
5326                       p1 -= 3;
5327                       break;
5328                     }
5329                 }
5330 
5331               /* Deal with the last alternative: go back and get number
5332                  of the `jump_past_alt' just before it.  `mcnt' contains
5333                  the length of the alternative.  */
5334               EXTRACT_NUMBER (mcnt, p1 - 2);
5335 
5336               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5337                 return false;
5338 
5339               p1 += mcnt;       /* Get past the n-th alternative.  */
5340             } /* if mcnt > 0 */
5341           break;
5342 
5343 
5344         case stop_memory:
5345           assert (p1[1] == **p);
5346           *p = p1 + 2;
5347           return true;
5348 
5349 
5350         default:
5351           if (!common_op_match_null_string_p (&p1, end, reg_info))
5352             return false;
5353         }
5354     } /* while p1 < end */
5355 
5356   return false;
5357 } /* group_match_null_string_p */
5358 
5359 
5360 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5361    It expects P to be the first byte of a single alternative and END one
5362    byte past the last. The alternative can contain groups.  */
5363 
5364 static boolean
5365 alt_match_null_string_p (p, end, reg_info)
5366     unsigned char *p, *end;
5367     register_info_type *reg_info;
5368 {
5369   int mcnt;
5370   unsigned char *p1 = p;
5371 
5372   while (p1 < end)
5373     {
5374       /* Skip over opcodes that can match nothing, and break when we get
5375          to one that can't.  */
5376 
5377       switch ((re_opcode_t) *p1)
5378         {
5379         /* It's a loop.  */
5380         case on_failure_jump:
5381           p1++;
5382           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5383           p1 += mcnt;
5384           break;
5385 
5386         default:
5387           if (!common_op_match_null_string_p (&p1, end, reg_info))
5388             return false;
5389         }
5390     }  /* while p1 < end */
5391 
5392   return true;
5393 } /* alt_match_null_string_p */
5394 
5395 
5396 /* Deals with the ops common to group_match_null_string_p and
5397    alt_match_null_string_p.
5398 
5399    Sets P to one after the op and its arguments, if any.  */
5400 
5401 static boolean
5402 common_op_match_null_string_p (p, end, reg_info)
5403     unsigned char **p, *end;
5404     register_info_type *reg_info;
5405 {
5406   int mcnt;
5407   boolean ret;
5408   int reg_no;
5409   unsigned char *p1 = *p;
5410 
5411   switch ((re_opcode_t) *p1++)
5412     {
5413     case no_op:
5414     case begline:
5415     case endline:
5416     case begbuf:
5417     case endbuf:
5418     case wordbeg:
5419     case wordend:
5420     case wordbound:
5421     case notwordbound:
5422 #ifdef emacs
5423     case before_dot:
5424     case at_dot:
5425     case after_dot:
5426 #endif
5427       break;
5428 
5429     case start_memory:
5430       reg_no = *p1;
5431       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5432       ret = group_match_null_string_p (&p1, end, reg_info);
5433 
5434       /* Have to set this here in case we're checking a group which
5435          contains a group and a back reference to it.  */
5436 
5437       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5438         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5439 
5440       if (!ret)
5441         return false;
5442       break;
5443 
5444     /* If this is an optimized succeed_n for zero times, make the jump.  */
5445     case jump:
5446       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5447       if (mcnt >= 0)
5448         p1 += mcnt;
5449       else
5450         return false;
5451       break;
5452 
5453     case succeed_n:
5454       /* Get to the number of times to succeed.  */
5455       p1 += 2;
5456       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5457 
5458       if (mcnt == 0)
5459         {
5460           p1 -= 4;
5461           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5462           p1 += mcnt;
5463         }
5464       else
5465         return false;
5466       break;
5467 
5468     case duplicate:
5469       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5470         return false;
5471       break;
5472 
5473     case set_number_at:
5474       p1 += 4;
5475 
5476     default:
5477       /* All other opcodes mean we cannot match the empty string.  */
5478       return false;
5479   }
5480 
5481   *p = p1;
5482   return true;
5483 } /* common_op_match_null_string_p */
5484 
5485 
5486 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5487    bytes; nonzero otherwise.  */
5488 
5489 static int
5490 bcmp_translate (s1, s2, len, translate)
5491      const char *s1, *s2;
5492      register int len;
5493      RE_TRANSLATE_TYPE translate;
5494 {
5495   register const unsigned char *p1 = (const unsigned char *) s1;
5496   register const unsigned char *p2 = (const unsigned char *) s2;
5497   while (len)
5498     {
5499       if (translate[*p1++] != translate[*p2++]) return 1;
5500       len--;
5501     }
5502   return 0;
5503 }
5504 
5505 /* Entry points for GNU code.  */
5506 
5507 /* re_compile_pattern is the GNU regular expression compiler: it
5508    compiles PATTERN (of length SIZE) and puts the result in BUFP.
5509    Returns 0 if the pattern was valid, otherwise an error string.
5510 
5511    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5512    are set in BUFP on entry.
5513 
5514    We call regex_compile to do the actual compilation.  */
5515 
5516 const char *
5517 re_compile_pattern (pattern, length, bufp)
5518      const char *pattern;
5519      size_t length;
5520      struct re_pattern_buffer *bufp;
5521 {
5522   reg_errcode_t ret;
5523 
5524   /* GNU code is written to assume at least RE_NREGS registers will be set
5525      (and at least one extra will be -1).  */
5526   bufp->regs_allocated = REGS_UNALLOCATED;
5527 
5528   /* And GNU code determines whether or not to get register information
5529      by passing null for the REGS argument to re_match, etc., not by
5530      setting no_sub.  */
5531   bufp->no_sub = 0;
5532 
5533   /* Match anchors at newline.  */
5534   bufp->newline_anchor = 1;
5535 
5536   ret = regex_compile (pattern, length, re_syntax_options, bufp);
5537 
5538   if (!ret)
5539     return NULL;
5540   return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5541 }
5542 #ifdef _LIBC
5543 weak_alias (__re_compile_pattern, re_compile_pattern)
5544 #endif
5545 
5546 /* Entry points compatible with 4.2 BSD regex library.  We don't define
5547    them unless specifically requested.  */
5548 
5549 #if defined _REGEX_RE_COMP || defined _LIBC
5550 
5551 /* BSD has one and only one pattern buffer.  */
5552 static struct re_pattern_buffer re_comp_buf;
5553 
5554 char *
5555 #ifdef _LIBC
5556 /* Make these definitions weak in libc, so POSIX programs can redefine
5557    these names if they don't use our functions, and still use
5558    regcomp/regexec below without link errors.  */
5559 weak_function
5560 #endif
5561 re_comp (s)
5562     const char *s;
5563 {
5564   reg_errcode_t ret;
5565 
5566   if (!s)
5567     {
5568       if (!re_comp_buf.buffer)
5569         return gettext ("No previous regular expression");
5570       return 0;
5571     }
5572 
5573   if (!re_comp_buf.buffer)
5574     {
5575       re_comp_buf.buffer = (unsigned char *) malloc (200);
5576       if (re_comp_buf.buffer == NULL)
5577         return (char *) gettext (re_error_msgid
5578                                  + re_error_msgid_idx[(int) REG_ESPACE]);
5579       re_comp_buf.allocated = 200;
5580 
5581       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5582       if (re_comp_buf.fastmap == NULL)
5583         return (char *) gettext (re_error_msgid
5584                                  + re_error_msgid_idx[(int) REG_ESPACE]);
5585     }
5586 
5587   /* Since `re_exec' always passes NULL for the `regs' argument, we
5588      don't need to initialize the pattern buffer fields which affect it.  */
5589 
5590   /* Match anchors at newlines.  */
5591   re_comp_buf.newline_anchor = 1;
5592 
5593   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5594 
5595   if (!ret)
5596     return NULL;
5597 
5598   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
5599   return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5600 }
5601 
5602 
5603 int
5604 #ifdef _LIBC
5605 weak_function
5606 #endif
5607 re_exec (s)
5608     const char *s;
5609 {
5610   const int len = strlen (s);
5611   return
5612     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5613 }
5614 
5615 #endif /* _REGEX_RE_COMP */
5616 
5617 /* POSIX.2 functions.  Don't define these for Emacs.  */
5618 
5619 #ifndef emacs
5620 
5621 /* regcomp takes a regular expression as a string and compiles it.
5622 
5623    PREG is a regex_t *.  We do not expect any fields to be initialized,
5624    since POSIX says we shouldn't.  Thus, we set
5625 
5626      `buffer' to the compiled pattern;
5627      `used' to the length of the compiled pattern;
5628      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5629        REG_EXTENDED bit in CFLAGS is set; otherwise, to
5630        RE_SYNTAX_POSIX_BASIC;
5631      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5632      `fastmap' to an allocated space for the fastmap;
5633      `fastmap_accurate' to zero;
5634      `re_nsub' to the number of subexpressions in PATTERN.
5635 
5636    PATTERN is the address of the pattern string.
5637 
5638    CFLAGS is a series of bits which affect compilation.
5639 
5640      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5641      use POSIX basic syntax.
5642 
5643      If REG_NEWLINE is set, then . and [^...] don't match newline.
5644      Also, regexec will try a match beginning after every newline.
5645 
5646      If REG_ICASE is set, then we considers upper- and lowercase
5647      versions of letters to be equivalent when matching.
5648 
5649      If REG_NOSUB is set, then when PREG is passed to regexec, that
5650      routine will report only success or failure, and nothing about the
5651      registers.
5652 
5653    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
5654    the return codes and their meanings.)  */
5655 
5656 int
5657 regcomp (preg, pattern, cflags)
5658     regex_t *preg;
5659     const char *pattern;
5660     int cflags;
5661 {
5662   reg_errcode_t ret;
5663   reg_syntax_t syntax
5664     = (cflags & REG_EXTENDED) ?
5665       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5666 
5667   /* regex_compile will allocate the space for the compiled pattern.  */
5668   preg->buffer = 0;
5669   preg->allocated = 0;
5670   preg->used = 0;
5671 
5672   /* Try to allocate space for the fastmap.  */
5673   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5674 
5675   if (cflags & REG_ICASE)
5676     {
5677       unsigned i;
5678 
5679       preg->translate
5680         = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5681                                       * sizeof (*(RE_TRANSLATE_TYPE)0));
5682       if (preg->translate == NULL)
5683         return (int) REG_ESPACE;
5684 
5685       /* Map uppercase characters to corresponding lowercase ones.  */
5686       for (i = 0; i < CHAR_SET_SIZE; i++)
5687         preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
5688     }
5689   else
5690     preg->translate = NULL;
5691 
5692   /* If REG_NEWLINE is set, newlines are treated differently.  */
5693   if (cflags & REG_NEWLINE)
5694     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
5695       syntax &= ~RE_DOT_NEWLINE;
5696       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5697       /* It also changes the matching behavior.  */
5698       preg->newline_anchor = 1;
5699     }
5700   else
5701     preg->newline_anchor = 0;
5702 
5703   preg->no_sub = !!(cflags & REG_NOSUB);
5704 
5705   /* POSIX says a null character in the pattern terminates it, so we
5706      can use strlen here in compiling the pattern.  */
5707   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5708 
5709   /* POSIX doesn't distinguish between an unmatched open-group and an
5710      unmatched close-group: both are REG_EPAREN.  */
5711   if (ret == REG_ERPAREN) ret = REG_EPAREN;
5712 
5713   if (ret == REG_NOERROR && preg->fastmap)
5714     {
5715       /* Compute the fastmap now, since regexec cannot modify the pattern
5716          buffer.  */
5717       if (re_compile_fastmap (preg) == -2)
5718         {
5719           /* Some error occurred while computing the fastmap, just forget
5720              about it.  */
5721           free (preg->fastmap);
5722           preg->fastmap = NULL;
5723         }
5724     }
5725 
5726   return (int) ret;
5727 }
5728 #ifdef _LIBC
5729 weak_alias (__regcomp, regcomp)
5730 #endif
5731 
5732 
5733 /* regexec searches for a given pattern, specified by PREG, in the
5734    string STRING.
5735 
5736    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5737    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
5738    least NMATCH elements, and we set them to the offsets of the
5739    corresponding matched substrings.
5740 
5741    EFLAGS specifies `execution flags' which affect matching: if
5742    REG_NOTBOL is set, then ^ does not match at the beginning of the
5743    string; if REG_NOTEOL is set, then $ does not match at the end.
5744 
5745    We return 0 if we find a match and REG_NOMATCH if not.  */
5746 
5747 int
5748 regexec (preg, string, nmatch, pmatch, eflags)
5749     const regex_t *preg;
5750     const char *string;
5751     size_t nmatch;
5752     regmatch_t pmatch[];
5753     int eflags;
5754 {
5755   int ret;
5756   struct re_registers regs;
5757   regex_t private_preg;
5758   int len = strlen (string);
5759   boolean want_reg_info = !preg->no_sub && nmatch > 0;
5760 
5761   private_preg = *preg;
5762 
5763   private_preg.not_bol = !!(eflags & REG_NOTBOL);
5764   private_preg.not_eol = !!(eflags & REG_NOTEOL);
5765 
5766   /* The user has told us exactly how many registers to return
5767      information about, via `nmatch'.  We have to pass that on to the
5768      matching routines.  */
5769   private_preg.regs_allocated = REGS_FIXED;
5770 
5771   if (want_reg_info)
5772     {
5773       regs.num_regs = nmatch;
5774       regs.start = TALLOC (nmatch * 2, regoff_t);
5775       if (regs.start == NULL)
5776         return (int) REG_NOMATCH;
5777       regs.end = regs.start + nmatch;
5778     }
5779 
5780   /* Perform the searching operation.  */
5781   ret = re_search (&private_preg, string, len,
5782                    /* start: */ 0, /* range: */ len,
5783                    want_reg_info ? &regs : (struct re_registers *) 0);
5784 
5785   /* Copy the register information to the POSIX structure.  */
5786   if (want_reg_info)
5787     {
5788       if (ret >= 0)
5789         {
5790           unsigned r;
5791 
5792           for (r = 0; r < nmatch; r++)
5793             {
5794               pmatch[r].rm_so = regs.start[r];
5795               pmatch[r].rm_eo = regs.end[r];
5796             }
5797         }
5798 
5799       /* If we needed the temporary register info, free the space now.  */
5800       free (regs.start);
5801     }
5802 
5803   /* We want zero return to mean success, unlike `re_search'.  */
5804   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5805 }
5806 #ifdef _LIBC
5807 weak_alias (__regexec, regexec)
5808 #endif
5809 
5810 
5811 /* Returns a message corresponding to an error code, ERRCODE, returned
5812    from either regcomp or regexec.   We don't use PREG here.  */
5813 
5814 size_t
5815 regerror (errcode, preg, errbuf, errbuf_size)
5816     int errcode;
5817     const regex_t *preg;
5818     char *errbuf;
5819     size_t errbuf_size;
5820 {
5821   const char *msg;
5822   size_t msg_size;
5823 
5824   if (errcode < 0
5825       || errcode >= (int) (sizeof (re_error_msgid_idx)
5826                            / sizeof (re_error_msgid_idx[0])))
5827     /* Only error codes returned by the rest of the code should be passed
5828        to this routine.  If we are given anything else, or if other regex
5829        code generates an invalid error code, then the program has a bug.
5830        Dump core so we can fix it.  */
5831     abort ();
5832 
5833   msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
5834 
5835   msg_size = strlen (msg) + 1; /* Includes the null.  */
5836 
5837   if (errbuf_size != 0)
5838     {
5839       if (msg_size > errbuf_size)
5840         {
5841 #if defined HAVE_MEMPCPY || defined _LIBC
5842           *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5843 #else
5844           memcpy (errbuf, msg, errbuf_size - 1);
5845           errbuf[errbuf_size - 1] = 0;
5846 #endif
5847         }
5848       else
5849         memcpy (errbuf, msg, msg_size);
5850     }
5851 
5852   return msg_size;
5853 }
5854 #ifdef _LIBC
5855 weak_alias (__regerror, regerror)
5856 #endif
5857 
5858 
5859 /* Free dynamically allocated space used by PREG.  */
5860 
5861 void
5862 regfree (preg)
5863     regex_t *preg;
5864 {
5865   if (preg->buffer != NULL)
5866     free (preg->buffer);
5867   preg->buffer = NULL;
5868 
5869   preg->allocated = 0;
5870   preg->used = 0;
5871 
5872   if (preg->fastmap != NULL)
5873     free (preg->fastmap);
5874   preg->fastmap = NULL;
5875   preg->fastmap_accurate = 0;
5876 
5877   if (preg->translate != NULL)
5878     free (preg->translate);
5879   preg->translate = NULL;
5880 }
5881 #ifdef _LIBC
5882 weak_alias (__regfree, regfree)
5883 #endif
5884 
5885 #endif /* not emacs  */

/* [previous][next][first][last][top][bottom][index][help] */